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Tracking Simulation Overview
You can build a complete tracking simulation using the functions and objects supplied in
this toolbox. The workflow for sensor fusion and tracking simulation consists of three (and
optionally four) components. These components are

1 Use the tracking scenario generator to create ground truth for all moving and
stationary radar platforms and all target platforms (planes, ships, cars, drones). The
trackingScenario class models the motion of all platforms in a global coordinate
system called scenario coordinates. These objects can represent ships, ground
vehicles, airframes, or any object that the radar detects. See “Orientation, Position,
and Coordinate Systems” for a discussion of coordinate systems.

2 Optionally, simulate an inertial navigation system (INS) that provides radar sensor
platform position, velocity, and orientation relative to scenario coordinates.

3 Create models for each radar sensor with specifications and parameters using the
monostaticRadarSensor, radarSensor, or radarEmitter objects. Using target
platform pose and profile information, generate synthetic radar detections for each
radar-target combination. Methods belonging to trackingScenario retrieve the
pose and profile of any target platform. The trackingScenario generator does not
have knowledge of scenario coordinates. It knows the relative positions of the target
platforms with respect to the body platform of the radar. Therefore, the detector can
only generate detections relative to the radar location and orientation.

If there is an INS attached to a radar platform, then the radar can transform
detections to the scenario coordinate system. The INS allows multiple radars to
report detections in a common coordinate system.

4 Process radar detections with a multi-object tracker to associate detections to
existing tracks or create tracks. Multi-object tracks include trackerGNN,
trackerTOMHT, trackerJPDA and trackerPHD. If there is no INS, the tracker can
only generate tracks specific to one radar. If an INS is present, the tracker can create
tracks using measurements from all radars.

The flow diagram shows the progression of information in a tracking simulation.
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Creating a Tracking Scenario
You can define a tracking simulation by using the trackingScenario object. By default,
the object creates an empty scenario. You can then populate the scenario with platforms
by calling the platform method as many times as needed. A platform is an object
(moving or stationary), which can either be a sensor, a target, or any other entity. A
platform can be modeled as a point or a cuboid by specifying the Dimensions property of
Platform. After creating a platform, you can specify the motion of the platform by using
its Trajectory property. To configure a trajectory, you can use waypointTrajectory,
which allows you to specify the 3-D waypoints that the platform follows and the
associated arrival time for each waypoint. Alternately, you can use
kinematicTrajectory, which allows you to specify the 3-D acceleration and angular
velocity of the platform with initial pose and translational velocity. You can also specify
the orientation of a platform using the Orientation property of
kinematicTrajectory or waypointTrajectory.

Run the simulation by calling the advance method on the trackingScenario object in
a loop, or by calling the record method to run the simulation all at once. You can set the
simulation update interval using the UpdateRate property in the trackingScenario
object. You can set the properties of a platform or leave them to their default value. You
can set them all except for PlatformID. The complete list of Platform properties is
shown here.

1 Tracking Scenarios
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Platform Properties

PlatformID Scenario-defined platform ID.
ClassID User-specified platform classification ID.
Dimensions 3-D dimensions of a cuboid that

approximates the size of a platform and
offset of the origin of the platform body
frame from the center of the cuboid. The
default value of Dimensions has all fields
equal to zero, which corresponds to a point
model.

Trajectory Platform motion, specified by
kinematicTrajecotry or
waypointTrajectory.

Signatures Platform signatures, specified as a cell
array of irSignature, rcsSignature,
and tsSignature objects. A signature
represents the reflection or emission
pattern of a platform.

PoseEstimator A pose estimator, specified as a pose-
estimator object such as insSensor
(default).

Emitter Emitters mounted on platform, specified as
a cell array of emitter objects, such as
radarEmitter or sonarEmitter.

Sensors Sensors mounted on platform, specified as
a cell array of sensor objects such as
irSensor or sonarSensor.

At any time during the simulation, you can retrieve the current values of platform
properties using the platformPoses and platformProfiles methods of the
trackingScenario object. Both the platformPoses and platformProfiles methods
return properties of all platforms with respect to the scenario's NED frame. You can also
use the pose method of the Platform to return the properties of one specific platform.
In addition, the Platform.targetPoses method, while similar, returns properties of
other platforms with respect to a specified platform.

 Creating a Tracking Scenario
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Create Tracking Scenario with Two Platforms
Construct a tracking scenario with two platforms that follow different trajectories.

sc = trackingScenario('UpdateRate',100.0,'StopTime',1.2);

Create two platforms.

platfm1 = platform(sc);
platfm2 = platform(sc);

Platform 1 follows a circular path of radius 10 m for one second. This is accomplished by
placing waypoints in a circular shape, ensuring that the first and last waypoint are the
same.

wpts1 = [0 10 0; 10 0 0; 0 -10 0; -10 0 0; 0 10 0];
time1 = [0; 0.25; .5; .75; 1.0];
platfm1.Trajectory = waypointTrajectory(wpts1, time1);

Platform 2 follows a straight path for one second.

wpts2 = [-8 -8 0; 10 10 0];
time2 = [0; 1.0];
platfm2.Trajectory = waypointTrajectory(wpts2,time2);

Verify the number of platforms in the scenario.

disp(sc.Platforms)

    [1x1 fusion.scenario.Platform]    [1x1 fusion.scenario.Platform]

Run the simulation and plot the current position of each platform. Use an animated line to
plot the position of each platform

figure
grid
axis equal
axis([-12 12 -12 12])
line1 = animatedline('DisplayName','Trajectory 1','Color','b','Marker','.');
line2 = animatedline('DisplayName','Trajectory 2','Color','r','Marker','.');
title('Trajectories')
p1 = pose(platfm1);
p2 = pose(platfm2);
addpoints(line1,p1.Position(1),p1.Position(2));
addpoints(line2,p2.Position(2),p2.Position(2));
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while advance(sc)
    p1 = pose(platfm1);
    p2 = pose(platfm2);
    addpoints(line1,p1.Position(1),p1.Position(2));
    addpoints(line2,p2.Position(2),p2.Position(2));
    pause(0.1)
end

Plot the waypoints for both platforms.

hold on
plot(wpts1(:,1),wpts1(:,2),' ob')
text(wpts1(:,1),wpts1(:,2),"t = " + string(time1),'HorizontalAlignment','left','VerticalAlignment','bottom')
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plot(wpts2(:,1),wpts2(:,2),' or')
text(wpts2(:,1),wpts2(:,2),"t = " + string(time2),'HorizontalAlignment','left','VerticalAlignment','bottom')
hold off
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Radar Detections

The radar detectors monostaticRadarSensor and radarSensor generate
measurements from target poses.
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Simulate Radar Detections
The monostaticRadarSensor object simulates the detection of targets by a scanning
radar. You can use the object to model many properties of real radar sensors. For
example, you can

• simulate real detections with added random noise
• generate false alarms
• simulate mechanically scanned antennas and electronically scanned phased arrays
• specify angular, range, and range-rate resolution and limits

The radar sensor is assumed to be mounted on a platform and carried by the platform as
it maneuvers. A platform can carry multiple sensors. When you create a sensor, you
specify sensor positions and orientations with respect to the body coordinate system of a
platform. Each call to monostaticRadarSensor creates a sensor. The output of
monostaticRadarSensor generates the detection that can be used as input to multi-
object trackers, such as trackerGNN, or any tracking filters, such as trackingKF.

The radar platform does not maintain any information about the radar sensors that are
mounted on it. (The sensor itself contains its position and orientation with respect to the
platform on which it is mounted but not which platform). You must create the association
between radar sensors and platforms. A way to do this association is to put the platform
and its associated sensors into a cell array. When you call a particular sensor, pass in the
platform-centric target pose and target profile information. The sensor converts this
information to sensor-centric poses. Target poses are outputs of trackingScenario
methods.

Create Radar Sensor
You can create a radar sensor using the monostaticRadarSensor object. Set the radar
properties using name-value pairs and then execute the simulator. For example,

radar1 = monostaticRadarSensor( ...
    'UpdateRate',updaterate, ...           % Hz
    'ReferenceRange', 111.0e3, ...         % m
    'ReferenceRCS', 0.0, ...               % dBsm
    'HasMechanicalScan',true, ...
    'MaxMechanicalScanRate',scanrate, ...  % deg/s
    'HasElectronicScan',false, ...
    'FieldOfView',fov, ...                 % [az;el] deg

2 Radar Detections
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    'HasElevation',false, ...
    'HasRangeRate',false, ...
    'AzimuthResolution',1.4, ...           % deg
    'RangeResolution', 135.0)                 % m
dets = radar1(targets,simtime);

Convenience Syntaxes

There are several syntaxes of monostaticRadarSensor that make it easier to specify
the properties of commonly implemented radar scan modes. These syntaxes set
combinations of these properties: ScanMode, FieldOfView, MaxMechanicalScanRate,
MechanicalScanLimits, and ElectronicScanLimits.

• sensor = monostaticRadarSensor('Rotator') creates a
monostaticRadarSensor object that mechanically scans 360° in azimuth. Setting
HasElevation to true points the radar antenna towards the center of the elevation
field of view.

• sensor = monostaticRadarSensor('Sector') creates a
monostaticRadarSensor object that mechanically scans a 90° azimuth sector.
Setting HasElevation to true, points the radar antenna towards the center of the
elevation field of view. You can change the ScanMode to 'Electronic' to
electronically scan the same azimuth sector. In this case, the antenna is not
mechanically tilted in an electronic sector scan. Instead, beams are stacked
electronically to process the entire elevation spanned by the scan limits in a single
dwell.

• sensor = monostaticRadarSensor('Raster') returns a
monostaticRadarSensor object that mechanically scans a raster pattern spanning
90° in azimuth and 10° in elevation upwards from the horizon. You can change the
ScanMode property to 'Electronic' to perform an electronic raster scan in the
same volume.

• sensor = monostaticRadarSensor('No scanning') returns a
monostaticRadarSensor object that stares along the radar antenna boresight
direction. No mechanical or electronic scanning is performed.

You can set other radar properties when you use these syntaxes. For example,

sensor = monostaticRadarSensor('Raster','ScanMode','Electronic')

Radar Sensor Parameters

The properties specific to the monostaticRadarSensor object are listed here. For more
detailed information, type

 Simulate Radar Detections
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help monostaticRadarSensor

at the command line.

Sensor location parameters.
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Sensor Location

SensorIndex A unique identifier for each sensor.
UpdateRate Rate at which sensor updates are

generated, specified as a positive scalar.
The reciprocal of this property must be an
integer multiple of the simulation time
interval. Updates requested between sensor
update intervals do not return detections.

MountingLocation Sensor (x,y,z) defining the offset of the
sensor origin from the origin of its platform.
The default value positions the sensor
origin at the platform origin.

Yaw Angle specifying the rotation around the
platform z-axis to align the platform
coordinate system with the sensor
coordinate system. Positive yaw angles
correspond to a clockwise rotation when
looking along the positive direction of the z-
axis of the platform coordinate system.
Rotations are applied using the ZYX
convention.

Pitch Angle specifying the rotation around the
platform y-axis to align the platform
coordinate system with the sensor
coordinate system. Positive pitch angles
correspond to a clockwise rotation when
looking along the positive direction of the y-
axis of the platform coordinate system.
Rotations are applied using the ZYX
convention.

 Simulate Radar Detections
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Roll Angle specifying the rotation around the
platform x-axis to align the platform
coordinate system with the sensor
coordinate system. Positive pitch angles
correspond to a clockwise rotation when
looking along the positive direction of the x-
axis of the platform coordinate system.
Rotations are applied using the ZYX
convention.

DetectionCoordinates Specifies the coordinate system for
detections reported in the “Detections” on
page 2-20 output struct. The coordinate
system can be one of:

• 'Scenario' –- detections are reported
in the scenario coordinate frame in
rectangular coordinates. This option can
only be selected when the sensor
HasINS property is set to true.

• 'Body' –- detections are reported in the
body frame of the sensor platform in
rectangular coordinates.

• 'Sensor rectangular' –- detections
are reported in the radar sensor
coordinate frame in rectangular
coordinates aligned with the sensor
frame axes.

• 'Sensor spherical' –- detections are
reported in the radar sensor coordinate
frame in spherical coordinates based on
the sensor frame axes.

Sensitivity parameters.

2 Radar Detections
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Sensitivity Parameters

DetectionProbability Probability of detecting a target with radar
cross section, ReferenceRCS, at the range
of ReferenceRange.

FalseAlarmRate The probability of a false detection within
each resolution cell of the radar. Resolution
cells are determined from the
AzimuthResolution and
RangeResolution properties and when
enabled the ElevationResolution and
RangeRateResolution properties.

ReferenceRange Range at which a target with radar cross
section, ReferenceRCS, is detected with
the probability specified in
DetectionProbability.

ReferenceRCS The target radar cross section (RCS) in dB
at which the target is detected at the range
specified by ReferenceRange with a
detection probability specified by
DetectionProbability.

Sensor resolution and bias parameters.

 Simulate Radar Detections
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Resolution Parameters

AzimuthResolution The radar azimuthal resolution defines the
minimum separation in azimuth angle at
which the radar can distinguish two
targets.

ElevationResolution The radar elevation resolution defines the
minimum separation in elevation angle at
which the radar can distinguish two
targets. This property only applies when the
HasElevation property is set to true.

RangeResolution The radar range resolution defines the
minimum separation in range at which the
radar can distinguish two targets.

RangeRateResolution The radar range rate resolution defines the
minimum separation in range rate at which
the radar can distinguish two targets. This
property only applies when the
HasRangeRate property is set to true.

AzimuthBiasFraction This property defines the azimuthal bias
component of the radar as a fraction of the
radar azimuthal resolution specified by the
AzimuthResolution property. This
property sets a lower bound on the
azimuthal accuracy of the radar.

ElevationBiasFraction This property defines the elevation bias
component of the radar as a fraction of the
radar elevation resolution specified by the
ElevationResolution property. This
property sets a lower bound on the
elevation accuracy of the radar. This
property only applies when the
HasElevation property is set to true.

2 Radar Detections
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RangeBiasFraction This property defines the range bias
component of the radar as a fraction of the
radar range resolution specified by the
RangeResolution property. This property
sets a lower bound on the range accuracy
of the radar.

RangeRateBiasFraction This property defines the range rate bias
component of the radar as a fraction of the
radar range resolution specified by the
RangeRateResolution property. This
property sets a lower bound on the range
rate accuracy of the radar. This property
only applies when you set the
HasRangeRate property to true.

Enabling parameters.

 Simulate Radar Detections
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Enabling Parameters

HasElevation This property allows the radar sensor to
scan in elevation and estimate elevation
from target detections.

HasRangeRate This property allows the radar sensor to
estimate range rate.

HasFalseAlarms This property allows the radar sensor to
generate false alarm detection reports.

HasRangeAmbiguities When true, the radar does not resolve
range ambiguities. When a radar sensor
cannot resolve range ambiguities, targets
at ranges beyond the
MaxUnambiguousRange property value are
wrapped into the interval [0
MaxUnambiguousRange]. When false,
targets are reported at their unwrapped
range.

HasRangeRateAmbiguites When true, the radar does not resolve
range rate ambiguities. When a radar
sensor cannot resolve range rate
ambiguities, targets at range rates above
the MaxUnambiguousRadialSpeed
property value are wrapped into the
interval [0
MaxUnambiguousRadialSpeed]. When
false, targets are reported at their
unwrapped range rates. This property only
applies when the HasRangeRate property
is set to true.

2 Radar Detections
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HasNoise Specifies if noise is added to the sensor
measurements. Set this property to true to
report measurements with noise. Set this
property to false to report measurements
without noise. The reported measurement
noise covariance matrix contained in the
output objectDetection struct is always
computed regardless of the setting of this
property.

HasOcclusion Enable occlusion from extended objects,
specified as true or false. Set this
property to true to model occlusion from
extended objects. Note that both extended
objects and point targets can be occluded
by extended objects, but a point target
cannot occlude another point target or an
extended object. Set this property to false
to disable occlusion of extended objects.

HasINS Set this property to true to enable an
optional input argument to pass the current
estimate of the sensor platform pose to the
sensor. This pose information is added to
the MeasurementParameters field of the
reported detections. Then, the tracking and
fusion algorithms can estimate the state of
the target detections in scenario
coordinates.

Scan parameters.

 Simulate Radar Detections

2-11



Scan Parameters

  
ScanMode This property specifies the scan mode used

by the radar as one of:

• 'No scanning' –- the radar does not
scan. The radar beam points along the
antenna boresight.

• 'Mechanical'–- the radar
mechanically scans between the azimuth
and elevation limits specified by the
MechanicalScanLimits property.

• 'Electronic'–- the radar
electronically scans between the
azimuth and elevation limits specified by
the ElectronicScanLimits property.

• 'Mechanical and electronic' –-
the radar mechanically scans the
antenna boresight between the
mechanical scan limits and
electronically scans beams relative to
the antenna boresight between the
electronic scan limits. The total field of
regard scanned in this mode is the
combination of the mechanical and
electronic scan limits.

In all scan modes except 'No scanning',
the scan proceeds at angular intervals
specified by the radar field of view specified
in FieldOfView.

2 Radar Detections
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MaxMechanicalScanRate This property sets the magnitude of the
maximum mechanical scan rate of the
radar. When HasElevation is true, the
scan rate is a vector consisting of separate
azimuthal and elevation scan rates. When
HasElevation is false, the scan rate is a
scalar representing the azimuthal scan
rate. The radar sets its scan rate to step the
radar mechanical angle by the radar field of
regard. When the required scan rate
exceeds the maximum scan rate, the
maximum scan rate is used.

MechanicalScanLimits This property specifies the mechanical scan
limits of the radar with respect to its
mounted orientation. When HasElevation
is true, the limits are specified by
minimum and maximum azimuth and by
minimum and maximum elevation. When
HasElevation is false, limits are
specified by minimum and maximum
azimuth. Azimuthal scan limits cannot span
more than 360 degrees and elevation scan
limits must lie in the closed interval [-90
90].

ElectronicScanLimits This property specifies the electronic scan
limits of the radar with respect to the
current mechanical angle. When
HasElevation is true, the limits are
specified by minimum and maximum
azimuth and by minimum and maximum
elevation. When HasElevation is false,
limits are specified by minimum and
maximum azimuth. Both azimuthal and
elevation scan limits must lie in the closed
interval [-90 90].

 Simulate Radar Detections
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FieldOfView This property specifies the sensor azimuthal
and elevation fields of view. The field of
view defines the total angular extent
observed by the sensor during a sensor
update. The field of view must lie in the
interval (0,180]. Targets outside of the
sensor angular field of view during a sensor
update are not detected.

Range and range rate parameters.
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Range and Range Rate Parameters

MaxUnambiguousRange This property specifies the range at which
the radar can unambiguously resolve the
range of a target. Targets detected at
ranges beyond the unambiguous range are
wrapped into the range interval [0
MaxUnambiguousRange]. This property
only applies to true target detections when
you set HasRangeAmbiguities property
to true.

This property also defines the maximum
range at which false alarms are generated.
This property only applies to false target
detections when you set HasFalseAlarms
property to true.

MaxUnambiguousRadialSpeed This property specifies the maximum
magnitude value of the radial speed at
which the radar can unambiguously resolve
the range rate of a target. Targets detected
at range rates whose magnitude is greater
than the maximum unambiguous radial
speed are wrapped into the range rate
interval [-MaxUnambiguousRadialSpeed
MaxUnambiguousRadialSpeed]. This
property only applies to true target
detections when you set both the
HasRangeRate and
HasRangeRateAmbiguities properties to
true.

This property also defines the range rate
interval over which false target detections
are generated. This property only applies to
false target detections when you set both
the HasFalseAlarms and HasRangeRate
properties to true.
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Detector Input
Each sensor created by monostaticRadarSensor accepts as input an array of target
structures. This structure serves as the interface between the trackingScenario and
the sensors. You create the target struct from target poses and profile information
produced by trackingScenario or equivalent software.

The structure contains these fields.

Field Description
PlatformID Unique identifier for the platform, specified

as a scalar positive integer. This is a
required field with no default value.

ClassID User-defined integer used to classify the
type of target, specified as a nonnegative
integer. Zero is reserved for unclassified
platform types and is the default value.

Position Position of target in platform coordinates,
specified as a real-valued, 1-by-3 vector.
This is a required field with no default
value. Units are in meters.

Velocity Velocity of target in platform coordinates,
specified as a real-valued, 1-by-3 vector.
Units are in meters per second. The default
is [0 0 0].

Acceleration Acceleration of target in platform
coordinates specified as a 1-by-3 row
vector. Units are in meters per second-
squared. The default is [0 0 0].

Orientation Orientation of the target with respect to
platform coordinates, specified as a scalar
quaternion or a 3-by-3 rotation matrix.
Orientation defines the frame rotation from
the platform coordinate system to the
current target body coordinate system.
Units are dimensionless. The default is
quaternion(1,0,0,0).
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Field Description
AngularVelocity Angular velocity of target in platform

coordinates, specified as a real-valued, 1-
by-3 vector. The magnitude of the vector
defines the angular speed. The direction
defines the axis of clockwise rotation. Units
are in degrees per second. The default is [0
0 0].

You can create a target pose structure by merging information from the platform
information output from the targetProfiles method of trackingScenario and target
pose information output from the targetPoses method on the platform carrying the
sensors. You can merge them by extracting for each PlatformID in the target poses
array, the profile information in platform profiles array for the same PlatformID.

The platform targetPoses method returns this structure for each target other than the
platform.

Target Poses

platformID
ClassID
Position
Velocity
Yaw
Pitch
Roll
AngularVelocity

The platformProfiles method returns this structure for all platforms in the scenario.
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Platform Profiles

PlatformID
ClassID
RCSPattern
RCSAzimuthAngles
RCSElevationAngles

Radar Sensor Coordinate Systems
Detections consist of measurements of positions and velocities of targets and their
covariance matrices. Detections are constructed with respect to sensor coordinates but
can be output in one of several coordinates. Multiple coordinate frames are used to
represent the positions and orientations of the various platforms and sensors in a
scenario.

In a radar simulation, there is always a top-level global coordinate system which is usually
the North-East-Down (NED) Cartesian coordinate system defined by a tangent plane at
any point on the surface of the Earth. The trackingScenario object models the motion
of platforms in the global coordinate system. When you create a platform, you specify its
location and orientation relative to the global frame. These quantities define the body
axes of the platform. Each radar sensor is mounted on the body of a platform. When you
create a sensor, you specify its location and orientation with respect to the platform body
coordinates. These quantities define the sensor axes. The body and radar axes can change
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over time, however, global axes do not change.

Additional coordinate frames can be required. For example, often tracks are not
maintained in NED (or ENU) coordinates, as this coordinate frame changes based on the
latitude and longitude where it is defined. For scenarios that cover large areas (over 100
kilometers in each dimension), earth-centered earth-fixed (ECEF) can be a more
appropriate global frame to use.
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A radar sensor generates measurements in spherical coordinates relative to its sensor
frame. However, the locations of the objects in the radar scenario are maintained in a top-
level frame. A radar sensor is mounted on a platform and will, by default, only be aware of
its position and orientation relative to the platform on which it is mounted. In other
words, the radar expects all target objects to be reported relative to the platform body
axes. The radar reports the required transformations (position and orientation) to relate
the reported detections to the platform body axes. These transformations are used by
consumers of the radar detections (e.g. trackers) to maintain tracks in the platform body
axes. Maintaining tracks in the platform body axes enables the fusion of measurement or
track information across multiple sensors mounted on the same platform.

If the platform is equipped with an inertial navigation system (INS) sensor, then the
location and orientation of the platform relative to the top-level frame can be determined.
This INS information can be used by the radar to reference all detections to scenario
coordinates.

INS
When you specify HasINS as true, you must pass in an INS struct into the step
method. This structure consists of the position, velocity, and orientation of the platform in
scenario coordinates. These parameters let you express target poses in scenario
coordinates by setting the DetectionCoordinates property.

Detections
Radar sensor detections are returned as a cell array of objectDetection objects. A
detection contains these properties.
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objectDetection Structure

Field Definition
Time Measurement time
Measurement Measurements
MeasurementNoise Measurement noise covariance matrix
SensorIndex Unique ID of the sensor
ObjectClassID Object classification
MeasurementParameters Parameters used by initialization functions

of any nonlinear Kalman tracking filters
ObjectAttributes Additional information passed to tracker

Measurement and MeasurementNoise are reported in the coordinate system specified
by the DetectionCoordinates property of the monostaticRadarSensor are reported
in sensor Cartesian coordinates.
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Measurement Coordinates

DetectionCoordinates Measurement and Measurement Noise
Coordinates

'Scenario' Coordinate Dependence on
HasRangeRate

HasRangeRate Coordinates
true [x;y;z;vx;vy;vz]
false [x;y;z]

'Body'
'Sensor rectangular'

'Sensor spherical' Coordinate Dependence on
HasRangeRate and HasElevation

HasRangeRa
te

HasElevati
on

Coordinate
s

true true [az;el;rng
;rr]

true false [az;rng;rr
]

false true [az;el;rng
]

false false [az;rng]

The MeasurementParameters field consists of an array of structs describing a
sequence of coordinate transformations from a child frame to a parent frame or the
inverse transformations (see “Frame Rotation”). The longest possible sequence of
transformations is: Sensor → Platform → Scenario. For example, if the detections are
reported in sensor spherical coordinates and HasINS is set to false, then the sequence
consists of one transformation from sensor to platform. If HasINS is true, the sequence of
transformations consists of two transformations – first to platform coordinates then to
scenario coordinates. Trivially, if the detections are reported in platform rectangular
coordinates and HasINS is set to false, the transformation consists only of the identity.

Each struct takes the form:
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MeasurementParameters

Parameter Definition
Frame Enumerated type indicating the frame used

to report measurements. When detections
are reported using a rectangular coordinate
system, Frame is set to 'rectangular'.
When detections are reported in spherical
coordinates, Frame is set 'spherical' for
the first struct.

OriginPosition Position offset of the origin of frame(k) from
the origin of frame(k+1) represented as a
3-by-1 vector.

OriginVelocity Velocity offset of the origin of frame(k) from
the origin of frame(k+1) represented as a
3-by-1 vector.

Orientation A 3-by-3 real-valued orthonormal frame
rotation matrix which rotates the axes of
frame(k+1) into alignment with the axes of
frame(k).

IsParentToChild A logical scalar indicating if Orientation
performs a frame rotation from the parent
coordinate frame to the child coordinate
frame. If false, Orientation performs a
frame rotation from the child's coordinate
frame to the parent's coordinate frame.

HasElevation A logical scalar indicating if the frame has
three-dimensional position. Only set to false
for the first struct when detections are
reported in spherical coordinates and
HasElevation is false, otherwise it is
true.

HasVelocity A logical scalar indicating if the reported
detections include velocity measurements.
true when HasRangeRate is enabled,
otherwise false.
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ObjectAttributes

Attribute Definition
TargetIndex Identifier of the platform, PlatformID,

that generated the detection. For false
alarms, this value is negative.

SNR Detection signal-to-noise ratio in dB.
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Multi-Object Tracking

• “Introduction to Estimation Filters” on page 3-2
• “Introduction to Multiple Target Tracking” on page 3-14
• “Introduction to Assignment Methods in Tracking Systems” on page 3-20
• “Introduction to Track-To-Track Fusion” on page 3-33
• “Tracking and Tracking Filters” on page 3-37
• “Multiple Extended Object Tracking” on page 3-46
• “Linear Kalman Filters” on page 3-48
• “Extended Kalman Filters” on page 3-55

Tracking is the process of estimating the state of motion of an object based on
measurements taken off the object. For an object moving in space, the state usually
consists of position, velocity, and any other state parameters of objects at any given time.
A state is the necessary information needed to predict future states of the system given
the specified equations of motion. The estimates are derived from observations on the
objects and are updated as new observations are taken. Observations are made using one
or more sensors. Observations can only be used to update a track if it is likely that the
observation is that of the object having that track. Observations need to be either
associated with an existing track or used to create a new track. When several tracks are
present, there are several ways observations are associated with one and only one track.
The chosen track is based on the "closest" track to the observation.
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Introduction to Estimation Filters

Background
Estimation Systems

For many autonomous systems, the knowledge of the system state is a prerequisite for
designing any applications. In reality, however, the state is often not directly obtainable.
The system state is usually inferred or estimated based on the system outputs measured
by certain instruments (such as sensors) and the flow of the state governed by a dynamic
or motion model. Some simple techniques, such as least square estimation or batch
estimation, are sufficient in solving static or offline estimation problems. For online and
real time (sequential) estimation problems, more sophisticated estimation filters are
usually applied.

An estimation system is composed of a dynamic or motion model that describes the flow
of the state and a measurement model that describes how the measurements are
obtained. Mathematically, these two models can be represented by an equation of motion
and a measurement equation. For example, the equation of motion and measurement
equation for a general nonlinear discrete estimation system can be written as:

xk + 1 = f (xk)
yk = h(xk)

where k is the time step, xk is the system state at time step k, f(xk) is the state-dependent
equation of motion, h(xk) is the state dependent measurement equation, and yk is the
output.

Noise Distribution

In most cases, building a perfect model to capture all the dynamic phenomenon is not
possible. For example, including all frictions in the motion model of an autonomous
vehicle is impossible. To compensate for these unmodelled dynamics, process noise (w) is
often added to the dynamic model. Moreover, when measurements are taken, multiple
sources of errors, such as calibration errors, are inevitably included in the measurements.
To account for these errors, proper measurement noise must be added to the
measurement model. An estimation system including these random noises and errors is
called a stochastic estimation system, which can be represented by:
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xk + 1 = f (xk, wk)
yk = h(xk, vk)

where wk and vk represent process noise and measurement noise, respectively.

For most engineering applications, the process noise and measurement noise are
assumed to follow zero-mean Gaussian or normal distributions, or are at least be
approximated by Gaussian distributions. Also, because the exact state is unknown, the
state estimate is a random variable, usually assumed to follow Gaussian distributions.
Assuming Gaussian distributions for these variables greatly simplifies the design of an
estimation filter, and form the basis of the Kalman filter family.

A Gaussian distribution for a random variable (x) is parametrized by a mean value μ and a
covariance matrix P, which is written as x∼N(μ,P). Given a Gaussian distribution, the
mean, which is also the most likely value of x, is defined by expectation (E) as:

μ = E[x]

The mean is also called the first moment of x about the origin. The covariance that
describes of the uncertainty of x is defined by expectation (E) as:

P = E x− μ x− μ T

The covariance is also called the second moment of x about its mean.

If the dimension of x is one, P is only a scalar. In this case, the value of P is usually
denoted by σ2 and called variance. The square root, σ, is called the standard deviation of
x. The standard deviation has important physical meaning. For example, the following
figure shows the probability density function (which describes the likelihood that x takes
a certain value) for a one-dimensional Gaussian distribution with mean equal to μ and
standard deviation equal to σ. About 68% of the data fall within the 1σ boundary of x,
95% of the data fall within the 2σ boundary, and 99.7% of the data fall within the 3σ
boundary.
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Even though the Gaussian distribution assumption is the dominant assumption in
engineering applications, there exist systems whose state cannot be approximated by
Gaussian distributions. In this case, non-Kalman filters (such as a particle filter) is
required to accurately estimate the system state.

Filter Design
The goal of designing a filter is to estimate the state of a system using measurements and
system dynamics. Since the measurements are usually taken at discrete time steps, the
filtering process is usually separated into two steps:

1 Prediction: Propagate state and covariance between discrete measurement time
steps (k = 1, 2, 3, …, N) using dynamic models. This step is also called flow update.

2 Correction: Correct the state estimate and covariance at discrete time steps using
measurements. This step is also called measurement update.
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For representing state estimate and covariance status in different steps, xk|k and Pk|k
denote the state estimate and covariance after correction at time step k, whereas xk+1|k
and Pk+1|k denote the state estimate and covariance predicted from the previous time step
k to the current time step k+1.

Prediction

In the prediction step, the state propagation is straightforward. The filter only needs to
substitute the state estimate into the dynamic model and propagate it forward in time as
xk+1|k = f(xk|k).

The covariance propagation is more complicated. If the estimation system is linear, then
the covariance can be propagated (Pk|k→Pk+1|k) exactly in a standard equation based on
the system properties. For nonlinear systems, accurate covariance propagation is
challenging. A major difference between different filters is how they propagate the system
covariance. For example:

• A linear Kalman filter uses a linear equation to exactly propagate the covariance.
• An extended Kalman filter propagates the covariance based on linear approximation,

which renders large errors when the system is highly nonlinear.
• An unscented Kalman filter uses unscented transformation to sample the covariance

distribution and propagate it in time.

How the state and covariance are propagated also greatly affects the computation
complexity of a filter. For example:

• A linear Kalman filter uses a linear equation to exactly propagate the covariance,
which is usually computationally efficient.

• An extended Kalman filter uses linear approximations, which require calculation of
Jacobian matrices and demand more computation resources.

• An unscented Kalman filter needs to sample the covariance distribution and therefore
requires the propagation of multiple sample points, which is costly for high-
dimensional systems.

Correction

In the correction step, the filter uses measurements to correct the state estimate through
measurement feedback. Basically, the difference between the true measurement and the
predicted measurement is added to the state estimate after it is multiplied by a feedback
gain matrix. For example, in an extended Kalman filter, the correction for the state
estimate is given by:
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xk + 1 k + 1 = xk + 1 k + Kk(yk + 1− h(xk + 1 k))

As mentioned, xk+1|k is the state estimate before (priori) correction and xk+1|k+1 is the state
estimate after (posteriori) correction. Kk is the Kalman gain governed by an optimal
criterion, yk is the true measurement, and h(xk+1|k) is the predicted measurement.

In the correction step, the filter also corrects the estimate error covariance. The basic
idea is to correct the probabilistic distribution of x using the distribution information of yk
+1. This is called the posterior probability density of x given y. In a filter, the prediction
and correction steps are processed recursively. The flowchart shows the general
algorithms for Kalman filters.

Estimation Filters in Sensor Fusion and Tracking Toolbox
Sensor Fusion and Tracking Toolbox offers multiple estimation filters you can use to
estimate and track the state of a dynamic system.

Kalman Filter

The classical Kalman filter (trackingKF) is the optimal filter for linear systems with
Gaussian process and measurement noise. A linear estimation system can be given as:

xk + 1 = Akxk + wk
yk = Hkxk + vk

Both the process and measurement noise are assumed to be Gaussian, that is:
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wk N(0, Qk)
vk N(0, Rk)

Therefore, the covariance matrix can be directly propagated between measurement steps
using a linear algebraic equation as:

Pk + 1 k = AkPk kAk
T + Qk

The correction equations for the measurement update are:

xk + 1 k + 1 = xk + 1 k + Kk(yk− Hkxk + 1 k)
Pk + 1 k + 1 = (I − KkHk)Pk + 1 k

To calculate the Kalman gain matrix (Kk) in each update, the filter needs to calculate the
inverse of a matrix:

Kk = Pk k− 1Hk
T HkPk k− 1Hk

T + Rk
−1

Since the dimension of the inverted matrix is equal to that of the estimated state, this
calculation requires some computation efforts for a high dimensional system. For more
details, see “Linear Kalman Filters” on page 3-48.

Alpha-Beta Filter

The alpha-beta filter (trackingABF) is a suboptimal filter applied to linear systems. The
filter can be regarded as a simplified Kalman filter. In a Kalman filter, the Kalman gain
and covariance matrices are calculated dynamically and updated in each step. However,
in an alpha-beta filter, these matrices are constant. This treatment sacrifices the
optimality of a Kalman filter but improves the computation efficiency. For this reason, an
alpha-beta filter might be preferred when the computation resources are limited.

Extended Kalman Filter

The most popular extended Kalman filter (trackingEKF) is modified from the classical
Kalman filter to adapt to the nonlinear models. It works by linearizing the nonlinear
system about the state estimate and neglecting the second and higher order nonlinear
terms. Its formulations are basically the same as those of a linear Kalman filter except
that the Ak and Hk matrices in the Kalman filter are replaced by the Jacobian matrices of
f(xk ) and h(xk):
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Ak =
∂ f (xk)
∂xk xk k− 1

Hk =
∂h(xk)
∂xk xk k− 1

If the true dynamics of the estimation system are close to the linearized dynamics, then
using this linear approximation does not yield significant errors for a short period of time.
For this reason, an EKF can produce relatively accurate state estimates for a mildly
nonlinear estimation system with short update intervals. However, since an EKF neglects
higher order terms, it can diverge for highly nonlinear systems (quadrotors, for example),
especially with large update intervals.

Compared to a KF, an EKF needs to derive the Jacobian matrices, which requires the
system dynamics to be differentiable, and to calculate the Jacobian matrices to linearize
the system, which demands more computation assets.

Note that for estimation systems with state expressed in spherical coordinates, you can
use trackingMSCEKF.

Unscented Kalman Filter

The unscented Kalman filter (trackingUKF) uses an unscented transformation (UT) to
approximately propagate the covariance distribution for a nonlinear model. The UT
approach samples the covariance Gaussian distribution at the current time, propagates
the sample points (called sigma points) using the nonlinear model, and approximates the
resulting covariance distribution assumed to be Gaussian by evaluating these propagated
sigma points. The figure illustrates the difference between the actual propagation, the
linearized propagation, and the UT propagation of the uncertainty covariance.
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Compared to the linearization approach taken by an EKF, the UT approach results in more
accurate propagation of covariance and leads to more accurate state estimation,
especially for highly nonlinear systems. UKF does not require the derivation and
calculation of Jacobian matrices. However, UKF requires the propagation of 2n+1 sigma
points through the nonlinear model, where n is the dimension of the estimated state. This
can be computationally expensive for high dimensional systems.

Cubature Kalman Filter

The cubature Kalman filter (trackingCKF) takes a slightly different approach than UKF
to generate 2n sample points used to propagate the covariance distribution, where n is
the dimension of the estimated state. This alternate sample point set often results in
better statistical stability and avoids divergence which might occur in UKF, especially
when running in a single-precision platform. Note that a CKF is essentially equivalent to a
UKF when the UKF parameters are set to α = 1, β = 0, and κ = 0. See trackingUKF for
the definition of these parameters.

Gaussian-Sum Filter

The Gaussian-Sum filter (trackingGSF) uses the weighted sum of multiple Gaussian
distributions to approximate the distribution of the estimated state. The estimated state is
given by a weighted sum of Gaussian states:
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xk = ∑
i = 1

N
ck

i xk
i

where N is the number of Gaussian states maintained in the filter, and ck
i is the weight for

the corresponding Gaussian state, which is modified in each update based on the
measurements. The multiple Gaussian states follow the same dynamic model as:

xk + 1
i = f (xk

i , wk
i ), for i = 1, 2, …, N .

The filter is effective in estimating the states of an incompletely observable estimation
system. For example, the filter can use multiple angle-parametrized extended Kalman
filters to estimate the system state when only range measurements are available. See
“Tracking with Range-Only Measurements” for an example.

Interactive Multiple Model Filter

The interactive multiple model filter (trackingIMM) uses multiple Gaussian filters to
track the position of a target. In highly maneuverable systems, the system dynamics can
switch between multiple models (constant velocity, constant acceleration, and constant
turn for example). Modelling the motion of a target using only one motion model is
difficult. A multiple model estimation system can be described as:

xk + 1
i = f i(xk

i , wk
i )

yk
i = hi(xk

i , vk
i )

where i = 1, 2, …, M, and M is the total number of dynamic models. The IMM filter
resolves the target motion uncertainty by using multiple models for a maneuvering target.
The filter processes all the models simultaneously and represents the overall estimate as
the weighted sum of the estimates from these models, where the weights are the
probability of each model. See “Tracking Maneuvering Targets” for an example.

Particle Filter

The particle filter (trackingPF) is different from the Kalman family of filters (EKF and
UKF, for example) as it does not rely on the Gaussian distribution assumption, which
corresponds to a parametric description of uncertainties using mean and variance.
Instead, the particle filter creates multiple simulations of weighted samples (particles) of
a system's operation through time, and then analyzes these particles as a proxy for the
unknown true distribution. A brief introduction of the particle filter algorithm is shown in
the figure.
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The motivation behind this approach is a law-of-large-numbers argument — as the
number of particles gets large, their empirical distribution gets close to the true
distribution. The main advantage of a particle filter over various Kalman filters is that it
can be applied to non-Gaussian distributions. Also, the filter has no restriction on the
system dynamics and can be used with highly nonlinear system. Another benefit is the
filter’s inherent ability to represent multiple hypotheses about the current state. Since
each particle represents a hypothesis of the state with a certain associated likelihood, a
particle filter is useful in cases where there exists ambiguity about the state.

Along with these appealing properties is the high computation complexity of a particle
filter. For example, a UKF requires propagating 13 sample points to estimate the 3-D
position and velocity of an object. However, a particle filter may require thousands of
particles to obtain a reasonable estimate. Also, the number of particles needed to achieve
good estimation grows very quickly with the state dimension and can lead to particle
deprivation problems in high dimensional spaces. Therefore, particle filters have been
mostly applied to systems with a reasonably low number of dimensions (for example
robots).
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How to Choose a Tracking Filter
The following table lists all the tracking filters available in Sensor Fusion and Tracking
Toolbox and how to choose them given constraints on system nonlinearity, state
distribution, and computational complexity.

Filter Name Supports
Nonlinear
Models

Gaussian State Computational
Complexity

Comments

Alpha-Beta Low Suboptimal
filter.

Kalman ✓ Medium Low Optimal for
linear systems.

Extended
Kalman

✓ ✓ Medium Uses linearized
models to
propagate
uncertainty
covariance.

Unscented
Kalman

✓ ✓ Medium High Samples the
uncertainty
covariance to
propagate the
sample points.
May become
numerically
unstable in a
single-precision
platform.

Cubature
Kalman

✓ ✓ Medium High Samples the
uncertainty
covariance to
propagate the
sample points.
Numerically
stable.
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Gaussian-Sum ✓ ✓

(Assumes a
weighted sum of
distributions)

High Good for
partially
observable cases
(angle-only
tracking for
example).

Interacting
Multiple Models
(IMM)

✓

Multiple models

✓

(Assumes a
weighted sum of
distributions)

High Maneuvering
objects (which
accelerate or
turn, for
example)

Particle ✓  Very High Samples the
uncertainty
distribution
using weighted
particles.
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Introduction to Multiple Target Tracking
Background
Tracking is essential for the guidance, navigation, and control of autonomous systems. A
tracking system estimates targets (number of targets and their states) and evaluates the
situational environment in an area of interest by taking detections (kinematic parameters
and attributes) and tracking these targets with time. The simplest tracking system is a
single target tracking (STT) system in a clutterless environment, which assumes one
target only in an area of interest. An STT does not require data assignment or association,
because the detection of the standalone target can be directly fed to an estimator or filter
used to estimate the state of the target.

Modern tracking systems usually involve multiple target tracking (MTT) systems, in
which one or more sensors generate multiple detections from multiple targets, and one or
more tracks are used to estimate the states of these targets. An MTT must assign
detections to tracks before the detections can be used to update the tracks. The MTT
assignment problem is challenging because of several factors:

• Target or detection distribution — If targets are sparsely distributed, then associating
a target to its corresponding detection is relatively easy. However, if targets or
detections are densely distributed, the assignment becomes ambiguous because
assigning a target to a detection or a nearby detection rarely makes any differences on
the cost.

• Probability of detection (Pd) of the sensor — Pd describes the probability that a target
is detected by the sensor if the target is within the field of view of the sensor. If the Pd
of a sensor is small, then the true target might not generate any detection during a
sensor scan. As a result, the track represented by the true target may steal detections
from other tracks.

• Sensor resolution — Sensor resolution determines the sensor’s ability to distinguish
between detections from two targets. If the sensor resolution is low, then two targets
in proximity might only give rise to one detection. This violates the common
assumption that each detection can only be assigned to one track and results in
unresolvable assignment conflicts between tracks.

• Clutter or false alarm rate of the sensor — False alarms introduce additional possible
assignments and therefore increase the complexity of data assignment.

• The number of targets and detections — The number of possible assignments
increases exponentially as the number of targets and detections increases. Therefore,
obtaining an optimal assignment requires more computations.
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Elements of an MTT System

The figure gives a structural representation of the functional elements of a simple
recursive MTT system [1]. In real world applications, the functions of these elements can
overlap considerably. However, this representation provides a convenient partitioning to
introduce the typical functions in an MTT system.

To interpret this diagram, assume a tracker has maintained confirmed or tentative tracks
from the previous scan. Now, the system considers whether to update tracks based on any
new detections received from sensors. To assign detections to the corresponding tracks:

1 The internal filter (such as a Kalman filter) predicts the confirmed or tentative tracks
from the previous step to the current step.

2 The tracker uses the predicted estimate and covariance to form a validation gate
around the predicted track.

3 The detections falling within the gate of a track are considered as candidates for
assignment to the track.

4 An assignment algorithm (based on the specific tracker, such as GNN or TOMHT)
determines the track-to-detection association.

5 Based on the assignment, the tracker executes track maintenance, including
initialization, confirmation, and deletion:

• Unassigned observations can initiate new tentative tracks.
• A tentative track becomes confirmed if the quality of the track satisfies the
confirmation criteria.

• Low-quality tracks are deleted based on the deletion criteria.
6 The new track set (tentative and confirmed) is predicted to the next scan step to form

validation gates.
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Detections

Detection is a collective term used to refer to all the observed or measured quantities
included in a report output (see objectDetection for example) from a sensor. In
general, an observation may contain measured kinematic quantities (such as range, line
of sight, and range-rate) and measured attributes (such as target type, identification
number, and shape). A detection should also contain the time at which measurements are
obtained.

For point target tracking, detections received from a single sensor scan can contain at
most one observation from each target. This assumption greatly simplifies the assignment
problem. One sensor can generate zero detections for a target within its field of view,
because the probability of detection, Pd, of each sensor is usually less than 1. Also, each
sensor can generate false alarm detections that do not correspond to true targets.

High-resolution sensors may generate multiple detections per target, which requires
partitioning the detections into one representative detection before feeding to
assignment-based trackers (such as trackerGNN, trackerJPDA, and trackerTOMHT).
See “Extended Object Tracking and Performance Metrics Evaluation” for more details.

Gating and Assignment

For details about gating and assignment, see “Introduction to Assignment Methods in
Tracking Systems” on page 3-20, which provides a comprehensive introduction of
assignment methods. This section only covers the basics of gating and assignment used in
the three assignment-based trackers, trackerGNN, trackerJPDA, and trackerTOMHT.

Gating is a screening mechanism used to determine which detections are valid candidates
to update existing tracks. The purpose of gating is to reduce unnecessary computation in
track-to-detection assignment. A validation gate of a predicted track is formed using the
predicted state and its associated covariance, such that the detections with high
probability of association fall within the validation gate of a track. Only the detections
within the gate of a track are considered for assignment with the track.

After gating, the assignment function determines which track-to-detection assignments to
make. Three methods of assignment are used with three trackers in the toolbox:

• trackerGNN — Global nearest data association. Based on likelihood theory, the goal of
the GNN method is to minimize an overall distance function that considers all track-to-
detection assignments.
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• trackerJPDA — Joint probability data association. The JPDA method applies a soft
assignment, such that detections within the validation gate of a track can all make
weighted contributions to the track based on their probability of association.

• trackerTOMHT — Track-oriented multiple hypothesis tracking. Unlike GNN and JPDA,
MHT is a deferred decision approach, which allows difficult data association situations
to be postponed until more information is received.

The decision of which tracker to use depends on the type of targets and computational
resources available:

• The GNN algorithm is the simplest to employ. It has low computational cost and can
result in adequate performance for tracking sparsely distributed targets.

• The JPDA algorithm, which requires more computational cost, is also applicable for
widely spaced targets. It usually performs better in a clutter environment than GNN.

• The TOMHT tracker, which requires heavily on computational resources, normally
results in the best performance among all the three trackers, especially for densely
distributed targets.

For more details, see the “Tracking Closely Spaced Targets Under Ambiguity” example for
a comparison of these three trackers.

Track Maintenance

Track maintenance refers to the function of track initiation, confirmation, and deletion.

Track Initiation. When a detection is not assigned to an existing track, a new track might
need to be created:

• The GNN approach starts new tentative tracks on observations that are not assigned
to existing tracks.

• The JPDA approach starts new tentative tracks on observations with probability of
assignment lower than a specified threshold.

• The MHT approach starts new tentative tracks on observations whose distances to
existing tracks are larger than a specified threshold. The tracker uses subsequent data
to determine which of these newly initiated tracks are valid.

Track Confirmation. Once a tentative track is formed, a confirmation logic identifies the
status of the track. Three track confirmation logics are used in the toolbox:
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• History Logic: A track is confirmed if the track has been assigned to a detection for at
least M updates during the last N updates. You can set the specific values for M and N.
trackerGNN and trackerJPDA use this logic.

• Track Score Logic: A track is confirmed if its score is higher than a specified
threshold. A higher track score means that the track is more likely to be valid. The
score is the ratio of the probability that the track is from a real target to the
probability that the track is false. trackerGNN and trackerTOMHT use this logic.

• Integrated Logic: A track is confirmed if its integrated probability of existence is
higher than a threshold. trackerJPDA uses this logic.

Track Deletion. A track is deleted if it is not updated within some reasonable time. The
track deletion criteria are similar to the track confirmation criteria:

• History Logic: A track is deleted if the track has not been assigned to a detection at
least P times during last R updates.

• Track Score Logic: A track is deleted if its score decreases from the maximum score
by a specified threshold.

• Integrated Logic: A track is deleted if its integrated probability of existence is lower
than a specified threshold.

For more details, see the “Introduction to Track Logic” example.

Filtering

The main functions of a tracking filter are:

1 Predict tracks to the current time.
2 Calculate distances from the predicted tracks to detections and the associated

likelihoods for gating and assignment.
3 Correct the predicted tracks using assigned detections.

Sensor Fusion and Tracking Toolbox offers multiple tracking filters that can be used with
the three assignment-based trackers (trackerGNN, trackerJPDA, and trackerTOMHT).
For a comprehensive introduction of these filters, see “Introduction to Estimation Filters”
on page 3-2.

Tracking Metrics
Sensor Fusion and Tracking Toolbox provides tools to analyze the tracking performance if
the truths are known:
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• You can use trackAssignmentMetrics to evaluate the performance of track
assignment and maintenance. trackAssignmentMetrics provides indexes such as
number of the track swaps, number of divergence steps, and number of redundant
assignments.

• You can use trackErrorMetrics to evaluate the accuracy of tracking.
trackErrorMetrics provides multiple root mean square (RMS) error values, which
numerically illustrate the accuracy performance of the tracker.

• You can use trackOSPAMetric to compute the optimal subpattern assignment
metric. trackErrorMetrics provides three scalar error components — localization
error, labelling error, and cardinality error to evaluate tracking performance.

Non-Assignment-Based Trackers
trackerGNN, trackerJPDA, and trackerTOMHT are assignment-based trackers,
meaning that the track-to-detection assignment is required. The toolbox also offers a
random finite set (RFS) based tracker, trackerPHD. You can use its supporting features
ggiwphd to track extended objects and gmphd to track both extended objects and point
targets.

See Also
ggiwphd | gmphd | objectDetection | trackerGNN | trackerJPDA | trackerPHD |
trackerTOMHT
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Introduction to Assignment Methods in Tracking
Systems

Background
In a multiple target tracking (MTT) system, one or more sensors generate multiple
detections from multiple targets in a scan. To track these targets, one essential step is to
assign these detections correctly to the targets or tracks maintained in the tracker so that
these detections can be used to update these tracks. If the number of targets or
detections is large, or there are conflicts between different assignment hypotheses,
assigning detections is challenging.

Depending on the dimension of the assignment, assignment problems can be categorized
into:

• 2-D assignment problem – assigns n targets to m observations. For example, assign 5
tracks to 6 detections generated from one sensor at one time step.

• S-D assignment problem – assigns n targets to a set (m1, m2, m3, …) of observations.
For example, assign 5 tracks to 6 detections from one sensor, and 4 detections from
another sensor at the same time. This example is a typical 3-D assignment problem.

To illustrate the basic idea of an assignment problem, consider a simple 2-D assignment
example. One company tries to assign 3 jobs to 3 workers. Because of the different
experience levels of the workers, not all workers are able to complete each job with the
same effectiveness. The cost (in hours) of each worker to finish each job is given by the
cost matrix shown in the table. An assignment rule is that each worker can only take one
job, and one job can only be taken by one worker. To guarantee efficiency, the object of
this assignment is to minimize the total cost.

Worker Job
1 2 3

1 41 72 39
2 22 29 49
3 27 39 60

Since the numbers of workers and jobs are both small in this example, all the possible
assignments can be obtained by enumeration, and the minimal cost solution is highlighted
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in the table with assignment pairs (1, 3), (2, 2) and (3, 1). In practice, as the size of the
assignment becomes larger, the optimal solution is difficult to obtain for 2-D assignment.
For an S-D assignment problem, the optimal solution may not be obtainable in practice.

2-D Assignment in Multiple Target Tracking
In the 2-D MTT assignment problem, a tracker tries to assign multiple tracks to multiple
detections. Other than the dimensionality challenge mentioned above, a few other factors
can significantly change the complexity of the assignment:

• Target or detection distribution — If targets are sparsely distributed, associating a
target to its corresponding detection is relatively easy. However, if targets or
detections are densely distributed, assignments become ambiguous because assigning
a target to a detection or another nearby detection rarely makes any differences on
the cost.

• Probability of detection (Pd) of the sensor — Pd describes the probability that a target
is detected by the sensor if the target is within the field of view of the sensor. If the Pd
of a sensor is small, then the true target may not give rise to any detection during a
sensor scan. As a result, the track represented by the true target may steal detections
from other tracks.

• Sensor resolution — Sensor resolution determines the sensor’s ability to distinguish
the detections from two targets. If the sensor resolution is low, then two targets in
proximity may only give rise to one detection. This violates the common assumption
that each detection can only be assigned to one track and results in unresolvable
assignment conflicts between tracks.

• Clutter or false alarm rate of the sensor — False alarms introduce additional possible
assignments and therefore increase the complexity of data assignment.

The complexity of the assignment task can determine which assignment methods to apply.
In Sensor Fusion and Tracking Toolbox toolbox, three 2-D assignment approaches are
employed corresponding to three different trackers:

• trackerGNN — adopts a global nearest data assignment approach
• trackerJPDA — adopts a joint probability data association approach
• trackerTOMHT — adopts a tracker-oriented multiple hypothesis tracking approach

Note that each tracker processes the data from sensors sequentially, meaning that each
tracker only deals with the assignment problem with the detections of one sensor at a
time. Even with this treatment, there may still be too many assignment pairs. To reduce
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the number of track and detection pairs considered for assignment, the gating technique
is frequently used.

Gating

Gating is a screening mechanism to determine which observations are valid candidates to
update existing tracks and eliminate unlikely detection-to-track pairs using the
distribution information of the predicted tracks. To establish the validation gate for a
track at the current scan, the estimated track for the current step is predicted from the
previous step.

For example, a tracker confirms a track at time tk and receives several detections at time
tk+1. To form a validation gate at time tk+1, the tracker first needs to obtain the predicted
measurement as:

y k + 1 = h(x k + 1 k)

where  is the track estimate predicted from time tk and  is the
measurement model that outputs the expected measurement given the track state. The
observation residual vector is

y = yk + 1− y k + 1

where yk+1 is the actual measurement. To establish the boundary of the gate, the
detection residual covariance S is used to form an ellipsoidal validation gate. The
ellipsoidal gate that establishes a spatial ellipsoidal region in the measurement space is
defined in Mahalanobis distance as:

d2(yk + 1) = yTS−1y ≤ G

where G is the gating threshold which you can specify based on the assignment
requirement. Increasing the threshold can incorporate more detections into the gate.

After the assignment gate is established for each track, the gating status of each
detection yi (i = 1,…,n) can be determined by comparing its Mahalanobis distance d2 (yi)
with the gating threshold G. If d2 (yi) < G, then detection yi is inside the gate of the track
and will be considered for association. Otherwise, the possibility of the detection
associated with the track is removed. In Figure 1, T1 represents a predicted track
estimate, and O1 – O6 are six detections. Based on the gating result, O1, O2, and O3 are
within the validation gate in the figure.
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Global Nearest Neighbor (GNN) Method

The GNN method is a single hypothesis assignment method. For each new data set, the
goal is to assign the global nearest observations to existing tracks and to create new track
hypotheses for unassigned detections.

The GNN assignment problem can be easily solved if there are no conflicts of association
between tracks. The tracker only needs to assign a track to its nearest neighbor. However,
conflict situations (see Figure 2) occur when there is more than one observation within a
track’s validation gate or an observation is in the gates of more than one track. To resolve
these conflicts, the tracker must evaluate a cost matrix.
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The elements of a cost matrix for the GNN method includes the distance from tracks to
detections and other factors you might want to consider. For example, one approach is to
define a generalized statistical distance between observation j to track i as:

Ci j = di j + ln( Si j )

where dij is the Mahalanobis distance and ln(|Sij|), the logarithm of the determinant of the
residual covariance matrix, is used to penalize tracks with greater prediction uncertainty.

For the assignment problem given in Figure 2, the following table shows a hypothetical
cost matrix. The nonallowed assignments, which failed the gating test, are denoted by X.
(In practice, the costs of nonallowed assignments can be denoted by large values, such as
1000.)

Tracks Observations
O1 O2 O3 O4

T1 9 6 X 6
T2 X 3 10 X
T2 8 4 X X
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For this problem, the highlighted optimal solution can be found by enumeration.
Detection O3 is unassigned, so the tracker will use it to create a new tentative track. For
more complicated GNN assignment problems, more accurate formulations and more
efficient algorithms to obtain the optimal or suboptimal solution are required.

A general 2-D assignment problem can be formed as following. Given the cost matrix
element Cij, find an assignment Z = {zij} that minimizes

J = ∑
i = 0

n
∑

j = 0

m
Ci jzi j

subject to two constraints:

∑
i = 0

m
zi j = 1, ∀ j

∑
j = 0

n
zi j = 1, ∀i

If track i is assigned to observation j, then zij = 1. Otherwise, zij = 0. zi0 = 1 represents the
hypothesis that track i is not assigned to any detection. Similarly, z0j = 1 represents the
hypothesis that observation j is not assigned to any track. The first constraint means each
detection can be assigned to no more than one track. The second constraint means each
track can be assigned to no more than one detection.

Sensor Fusion and Tracking Toolbox provides multiple functions to solve 2-D GNN
assignment problems:

• assignmunkres – Uses the Munkres algorithm, which guarantees an optimal solution
but may require more calculation operations.

• assignauction – Uses the auction algorithm, which requires fewer operations but
can possibly converge on an optimal or suboptimal solution.

• assignjv – Uses the Joker-Volgenant algorithm, which also converges on an optimal
or suboptimal solution but usually with a faster converging speed.

In trackerGNN, you can select the assignment algorithm by specifying the Assignment
property.

K Best Solutions to the 2-D Assignment Problem

Because of the uncertainty nature of assignment problems, only obtaining a solution
(optimal or suboptimal) may not be sufficient. To account for multiple hypotheses about
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the assignment between tracks and detections, multiple suboptimal solutions are
required. These suboptimal solutions are called K best solutions to the assignment
problem.

The K best solutions are usually obtained by varying the solution obtained by any of the
previously mentioned assignment functions. Then, at the next step, the K best solution
algorithm removes one track-to-detection pair in the original solution and finds the next
best solution. For example, for this cost matrix:

10 5 8 9
7 × 20 ×
×
×

21
15

×
17

×
×

× × 16 22

each row represents the cost associated with a track, and each column represents the
cost associated with a detection. As highlighted, the optimal solution is (7,15,16, 9) with a
cost of 47. In the next step, remove the first pair (corresponding to 7), and the next best
solution is (10,15, 20, 22) with a cost of 67. After that, remove the second pair
(corresponding to 15), and the next best solution is (7, 5,16, 9) with a cost of 51. After a
few steps, the five best solutions are:

Solution Cost
(7,15,16, 9) 47
(7,5,17, 22) 51
(7,15, 8, 22) 52
(7, 21,16, 9) 53
(7, 21,17, 9) 53

See the “Find Five Best Solutions Using Assignkbest” example, which uses the
assignkbest function to find the K best solutions.

Joint Probability Data Association (JPDA) Method

While the GNN method makes a rigid assignment of a detection to a track, the JPDA
method applies a soft assignment so that detections within the validation gate of a track
can all make weighted contributions to the track based on their probability of association.
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For example, for the gating results shown in Figure 1, a JPDA tracker calculates the
possibility of association between track T1 and observations O1, O2, and O3. Assume the
association probability of these three observations are p11, p12, and p13, and their

residuals relative to track T1 are , , and , respectively. Then the weighted sum
of the residuals associated with track T1 is:

y1 = ∑
j = 1

3
p1 jy1 j

In the tracker, the weighted residual is used to update track T1 in the correction step of
the tracking filter. In the filter, the probability of unassignment, p10, is also required to
update track T1. For more details, see “JPDA Correction Algorithm for Discrete Extended
Kalman Filter”.

The JPDA method requires one more step when there are conflicts between assignments
in different tracks. For example, in the following figure, track T2 conflicts with T1 on the
assignment of observation O3. Therefore, to calculate the association probability p13, the
joint probability that T2 is not assigned to O3 (that is T2 is assigned to O6 or unassigned)
must be accounted for.
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Track-Oriented Multiple Hypothesis Tracking (TOMHT) Method

Unlike the JPDA method, which combines all detections within the validation gate using a
weighted sum, the TOMHT method generates multiple hypotheses or branches of the
tracks based on the detections within the gate and propagates high-likelihood branches
between scan steps. After propagation, these hypotheses can be tested and pruned based
on the new set of detections.

For example, for the gating scenario shown in Figure 1, a TOMHT tracker considers the
following four hypotheses:

• Assign no detection to T1 resulting in hypothesis T10

• Assign O1 to T1 resulting in hypothesis T11

• Assign O2 to T1 resulting in hypothesis T12

• Assign O3 to T1 resulting in hypothesis T13

Given the assignment threshold, the tracker will calculate the possibility of each
hypothesis and discard hypotheses with probability lower than the threshold.
Hypothetically, if only p10 and p11 are larger than the threshold, then only T10 and T11 are
propagated to the next step for detection update.

S-D Assignment in Multiple Target Tracking
In an S-D assignment problem, the dimension of assignment S is larger than 2. Note that
all three trackers (trackerGNN, trackerJPDA, and trackerTOMHT) process detections
from each sensor sequentially, which results in a 2-D assignment problem. However, some
applications require a tracker that processes simultaneous observations from multiple
sensor scans all at once, which requires solving an S-D assignment problem. Meanwhile,
the S-D assignment is widely used in tracking applications such as static data fusion,
which preprocesses the detection data before fed to a tracker.

An S-D assignment problem for static data fusion has S scans of a surveillance region
from multiple sensors simultaneously, and each scan consists of multiple detections. The
detection sources can be real targets or false alarms. The object is to detect an unknown
number of targets and estimate their states. For example, as shown in the Figure 4, three
sensor scans produce six detections. The detections in the same color belong to the same
scan. Since each scan generates two detections, there are probably two targets in the
region of surveillance. To choose between different assignment or association
possibilities, evaluate the cost matrix.
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The calculation of the cost can depend on many factors, such as the distance between
detections and the covariance distribution of each detection. To illustrate the basic
concept, the assignment costs for a few hypotheses are hypothetically given in the table
[1].

Assignment
Hypotheses

First Scan
Observations (O1x)

Second Scan
Observation (O2x)

Third Scan
Observation (O3x)

Cost

1 0 1 1 −10.2
2 1 2 0 −10.9
3 1 1 1 −18.0
4 1 1 2 −14.8
5 1 2 1 −17.0
6 2 0 1 −13.2
7 2 0 2 −10.6
8 2 2 0 −11.1
9 2 1 2 −14.1
10 2 2 2 −16.7
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In the table, 0 denotes a track is associated with no detection in that scan. Assume the
hypotheses not shown in the table are truncated by gating or neglected because of high
costs. To concisely represent each track, use cijk to represent the cost for association of
observation i in scan 1, j in scan 2, and k in scan 3. For example, for the assignment
hypothesis 1, c011 = -10.2. Several track hypotheses conflict with other in the table. For
instance, the two most likely assignments, c111 and c121 are incompatible because they
share the same observation in scans 1 and 3.

The goal of solving an S-D assignment problem is to find the most likely compatible
assignment hypothesis accounting for all the detections. When S ≥ 3, however, the
problem is known to scale with the number of tracks and detections at an exponential
rate (NP-hard). The Lagrangian relaxation method is commonly used to obtain the optimal
or sub-optimal solution for an S-D assignment problem efficiently.

Brief Introduce to the Lagrangian Relaxation Method for 3-D Assignment

Three scans of data have a number of M1, M2, and M3 observations, respectively. Denote
an observation of scan 1, 2, and 3 as i, j, and k, respectively. For example, i = 1, 2, …, M1.
Use zijk to represent the track formation hypothesis of O1i, O2j, and O3k. If the hypothesis is
valid, then zijk = 1; otherwise, zijk = 0. As mentioned, cijk is used to represent the cost of
zijk association. cijk is 0 for false alarms and negative for possible associations. The S-D
optimization problem can be formulated as:

J(z) = min
i, j, k

∑
i = 0

M1
∑

j = 0

M2
∑

k = 0

M3
ci jkzi jk

subject to three constraints:

∑
i = 0

M1
∑

j = 0

M2
zi jk = 1, ∀k = 1, 2, …, M3

∑
i = 0

M1
∑

k = 0

M3
zi jk = 1, ∀ j = 1, 2, …, M2

∑
j = 0

M2
∑

k = 0

M3
zi jk = 1, ∀i = 1, 2, …, M1

The optimization function chooses associations to minimize the total cost. The three
constraints ensure that each detection is accounted for (either included in an assignment
or treated as false alarm).
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The Lagrangian relaxation method approaches this 3-D assignment problem by relaxing
the first constraint using Lagrange multipliers. Define a new function L(λ) :

L(λ) = ∑
k = 0

M3
λk ∑

i = 0

M1
∑

j = 0

M2
zi jk− 1

where λk, k = 1, 2, …, M3 are Lagrange multipliers. Subtract L from the original object
function J(z) to get a new object function, and the first constraint in k is relaxed.
Therefore, the 3-D assignment problem reduces to a 2-D assignment problem, which can
be solved by any of the 2-D assignment method. For more details, see [1].

The Lagrangian relaxation method allows the first constraint to be mildly violated, and
therefore can only guarantee a suboptimal solution. For most applications, however, this
is sufficient. To specify the solution accuracy, the method uses the solution gap, which
defines the difference between the current solution and the potentially optimistic solution.
The gap is nonnegative, and a smaller solution gap corresponds to a solution closer to the
optimal solution.

Sensor Fusion and Tracking Toolbox provides assignsd to solve for S-D assignment
using the Lagrangian relaxation method. Similar to the K best 2-D assignment solver
assignkbest, the toolbox also provides a K best S-D assignment solver,
assignkbestsd, which is used to provide multiple suboptimal solutions for an S-D
assignment problem.

See “Tracking Using Distributed Synchronous Passive Sensors” for the application of S-D
assignment in static detection fusion.

See Also
assignTOMHT | assignauction | assignjv | assignkbest | assignkbestsd |
assignmunkres | assignsd | trackerGNN | trackerJPDA | trackerTOMHT

References
[1] Blackman, S., and R. Popoli. Design and Analysis of Modern Tracking Systems. Artech

House Radar Library, Boston, 1999.

 See Also

3-31



[2] Musicki, D., and R. Evans. "Joint Integrated Probabilistic Data Association: JIPDA."
IEEE Transactions on Aerospace and Electronic Systems . Vol. 40, Number 3,
2004, pp 1093 –1099.

3 Multi-Object Tracking

3-32



Introduction to Track-To-Track Fusion

Track-To-Track Fusion Versus Central-Level Tracking
A multiple sensor tracking system can provide better performance than a single sensor
system because it can provide broader coverage and better visibility. Moreover, fusing
detections from different types of sensors can also improve the quality and accuracy of
the target estimates. Two types of architecture are commonly used in a multiple sensor
tracking system. In the first type of architecture — central-level tracking — the detections
from all the sensors are sent directly to a tracking system that maintains tracks based on
all the detections. Theoretically, the central-level tracking architecture can achieve the
best performance because it can fully use all the information contained in the detections.
However, you can also apply a hierarchical structure with sensor-level tracking combined
with track-level fusion for a multiple sensor system. The figure shows a typical central-
level tracking system and a typical track-to-track fusion system based on sensor-level
tracking and track-level fusion.

To represent each element in a track-to-track fusion system, call tracking systems that
output tracks to a fuser as sources, and call the outputted tracks from sources as source
tracks or local tracks. Call the tracks maintained in the fuser as central tracks.

Benefits and Challenges of Track-To-Track Fusion
In some cases, a track-to-track fusion architecture may be preferable to a central-level
tracking architecture. These cases include:
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• In many applications, a tracking system not only needs to track targets in its
environment for self-navigation, but also needs to transfer its maintained tracks to
surrounding tracking systems for better overall navigation performance. For example,
an autonomous vehicle that tracks its own situational environment can also share the
maintained tracks with other vehicles to facilitate their navigation.

• In practice, many sensors directly output tracks instead of detections. Therefore, to
combine information from sensors that output tracks, the track-level fusion is
required.

• When communication bandwidth is limited, transmitting a track list is often more
efficient than transmitting a set of detections. This can be particularly important for
cases in which the track list is provided at a reduced rate relative to the scan rate.

• When the number of sensors and detections is large, the computation complexity for
the centralized tracking system can be high, especially for detection assignment. The
track-to-track fusion architecture can distribute some assignment and estimation
workloads to the sensor-level tracking, which reduces the computation complexity of
the fuser.

Despite all the advantages favoring the track-to-track fusion architecture, it also poses
additional complexity and challenges to the tracking system. Unlike detections, which can
be assumed to be conditionally independent, the track estimates from each source are
correlated with each other because they share a common prediction error resulting from
a common process model. Therefore, computing a fused track using a standard filtering
approach might lead to incorrect results. The following effects must be considered:

• Common process noise — Since the sensors observe and track the same target, they
share some common dynamics. As a result, target maneuvering can lead to a mean
error that is common to all sensors.

• Time-correlated measurement noise — If the track fusion is repeated over time, the
standard Kalman filter assumption that measurements are not correlated over time is
violated, because the sensor-level track state estimation errors are correlated over
time.

Track Fuser and Tracking Architecture
You can use the trackFuser in Sensor Fusion and Tracking Toolbox for the purpose of
track-to-track fusion. The trackFuser System object™ provides two algorithms to
combine source tracks considering the correction effects between different tracks. You
can choose the algorithm by specifying the StateFusion property of trackFuser as:
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• 'Cross' — Uses the cross-covariance fusion algorithm.
• 'Intersection' — Uses the covariance intersection fusion algorithm.

You can also customize your own fusion algorithm.

Other than the standard track-to-track fusion architecture shown in the preceding figure,
you can also use other types of architectures with trackFuser. For example, the
following figure illustrates a two-vehicle tracking system.

On each vehicle, two sensors track the nearby targets with associated trackers. Each
vehicle also has a fuser that fuses source tracks from two trackers. Fuser 6 can transmit
its maintained central tracks to Fuser 3. With this architecture, Vehicle 1 can possibly
identify targets (Target 2 in the figure) that are not within the field of view of its own
sensors.
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To reduce rumor propagation, you can treat the source tracks from Fuser 6 to Fuser 3 as
external by specifying the IsInternalSource property of
fuserSourceConfiguration as false when setting up the SourceConfigurations
property of TrackFuser.

Since tracks reported by different trackers can be expressed in different coordinate
frames, you need to specify the coordinate transformation between a source and a fuser
by specifying the fuserSourceConfiguration property.

See Also
fuserSourceConfiguration | trackFuser | trackerGNN | trackerJPDA |
trackerPHD | trackerTOMHT

References
[1] Chong, C. Y., S. Mori, W. H. Barker, and K. C. Chang. "Architectures and Algorithms for

Track Association and Fusion." IEEE Aerospace and Electronic Systems
Magazine, Vol. 15, No. 1, 2000, pp. 5 – 13.
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Tracking and Tracking Filters

Multi-Object Tracking
You can use multi-sensor, multi-target trackers, trackerGNN, trackerJPDA, and
trackerTOMHT, to track multiple targets. These trackers implement the multi-object
tracking problem using the measurement-to-track association approach. Tracks are
initiated and updated using sensor detections of targets. Trackers take several steps
when new detections are made:

• The tracker tries to assign a detection to an existing track.
• The tracker creates a track for each detection it cannot assign. When starting the

tracker, all detections are used to create tracks.
• The tracker evaluates the status of each track. For new tracks, the status is tentative

until enough detections are made to confirm the track. For existing tracks, newly
assigned detections are used by the tracking filter to update the track state. When a
track has no new added detections, the track is coasted (predicted) until new
detections are assigned to it. If no new detections are added after a specified number
of updates, the track is deleted.

When tracking multiple objects using these trackers, there are several things to consider:

• Decide which tracker to use.

• trackerGNN uses a global nearest-neighbor assignment algorithm, which
maintains a single hypothesis about the tracked object. The tracker offers low
computation cost but is not robust during ambiguous association events.

• trackerTOMHT assigns detections based on a track-oriented, multi-hypothesis
approach, which maintains multiple hypotheses about the tracked object. The
tracker is robust during ambiguous data association events but is computationally
more expensive.

• trackerJPDA uses a joint probabilistic data association approach, which applies a
soft assignment where multiple detections can contribute to each track. The
tracker balances the robustness and computation cost between trackerGNN and
trackerTOMHT.

See the “Tracking Closely Spaced Targets Under Ambiguity” example for a comparison
between these three trackers.
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• Decide which type of tracking filter to use.

The choice of tracking filter depends on the expected dynamics of the object you want
to track. The toolbox provides multiple Kalman filters including the Linear Kalman
filter, trackingKF, the Extended Kalman filter, trackingEKF, the Unscented Kalman
filter, trackingUKF, and the Cubature Kalman filter, trackingCKF. The linear
Kalman filter is used when the dynamics of the object follow a linear model and the
measurements are linear functions of the state vector. The extended, unscented, and
cubature Kalman filters are used when the dynamics are nonlinear, the measurement
model is nonlinear, or both. The toolbox also provides non-Gaussian filters such as the
particle filter, trackingPF, Gaussian-sum filter, trackingGSF, and the Interacting
Multiple Model (IMM) filter, trackingIMM. See the “Tracking with Range-Only
Measurements” and “Tracking Maneuvering Targets” examples for more information
about these filters.

You can set the type of filter by specifying the FilterInitializationFcn property
of a tracker. For example, if you set the FilterInitializationFcn property to
@initcaekf, then the tracker uses the initcaekf function to create a constant-
acceleration extended Kalman filter for a new track generated from detections.

• Decide which track logic to use.

You can specify the conditions under which a track is confirmed or deleted by setting
the TrackLogic property. Three algorithms are supported:

• 'History' — Track confirmation and deletion are based on the number of times
the track has been assigned to a detection in the last several tracker updates. You
can use this logic with trackerGNN and trackerJPDA.

• 'Score' — Track confirmation and deletion are based on a log-likelihood
computation. A high score means that the track is more likely to be valid. A low
score means that the track is more likely to be false. You can use this logic with
trackerGNN and trackerTOMHT.

• 'Integrated' — Track confirmation and deletion are based on the probability of
track existence. You can use this logic with trackerJPDA.

For more details, see the “Introduction to Track Logic” example.

You can also use a multi-sensor, multi-target tracker, trackerPHD, to track multiple
targets simultaneously. trackerPHD approaches the multi-object tracking problem using
the random finite set (RFS) method and tracks the probability hypothesis density (PHD) of
a scenario. trackerPHD extracts peaks from the PHD-intensity to represent potential
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targets and maintain identities of targets by assigning a label to each component. The
toolbox offers one realization of PHD, ggiwphd, which represents the PHD of extended
targets using a Gamma Gaussian Inverse-Wishart (GGIW) target-state model. You can
represent the configurations of sensors for trackerPHD using
trackingSensorConfiguration.

Multi-Object Tracker Properties
trackerGNN Properties

The trackerGNN object is a multi-sensor, multi-object tracker that uses global nearest
neighbor association. Each detection can be assigned to only one track (single-hypothesis
tracker) which can also be a new track that the detection initiates. At each step of the
simulation, the tracker updates the track state. You can specify the behavior of the
tracker by setting the following properties.
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trackerGNN Properties

FilterInitializationFcn A handle to a function that initializes a
tracking filter based on a single detection.
This function is called when a detection
cannot be assigned to an existing track. For
example, initcaekf creates an extended
Kalman filter for an accelerating target. All
tracks are initialized with the same type of
filter.

Assignment The name of the assignment algorithm. The
tracker provides three built-in algorithms:
'Munkres', 'Jonker-Volgenant', and
'Auction' algorithms. You can also create
your own custom assignment algorithm by
specifying 'Custom'.

CustomAssignmentFcn The name of the custom assignment
algorithm function. This property is
available on when the Assignment
property is set to 'Custom'.

AssignmentThreshold Specify the threshold that controls the
assignment of a detection to a track.
Detections can only be assigned to a track
if their normalized distance from the track
is less than the assignment threshold. Each
tracking filter has a different method of
computing the normalized distance.
Increase the threshold if there are
detections that can be assigned to tracks
but are not. Decrease the threshold if there
are detections that are erroneously
assigned to tracks.
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TrackLogic Specify the track confirmation logic
–-'History' or 'Score'. For descriptions
of these options, type

help trackHistoryLogic

or

help trackScoreLogic

at the command line.
ConfirmationThreshold Specify the threshold for track

confirmation. The threshold depends on the
setting for TrackLogic

• 'History' –- specify the confirmation
threshold as [M N]. If the track is
detected at least M times in the last N
updates, the track is confirmed.

• 'Score' –-- specify the confirmation
threshold as a single number. If the
score is greater than or equal to the
threshold, this track is confirmed.

.
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DeletionThreshold Specify the threshold for track deletion.
The threshold depends on the setting of
TrackLogic

• 'History' –- specify the deletion
threshold as a pair of integers [P R]. A
track is deleted if it is not assigned to a
track at least P times in the last R
updates.

• 'Score' –-- specify the deletion
threshold as a single number. The track
is deleted if its score decreases by at
least this threshold from its maximum
track score.

.
DetectionProbability Specify the probability of detection as a

number in the range (0,1). The probability
of detection is used to calculate the track
score when initializing and updating a
track. This property is used only when
TrackLogic is set to 'Score'.

FalseAlarmRate Specify the rate of false detection as a
number in the range (0,1). The false alarm
rate is used to calculate the track score
when initializing and updating a track. This
property is used only when TrackLogic is
set to 'Score'.

Beta Specify the rate of new tracks per unit
volume as a positive number. This property
is used only when TrackLogic is set to
'Score'. The rate of new tracks is used in
calculating the track score during track
initialization. This property is used only
when TrackLogic is set to 'Score'.
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Volume Specify the volume of the sensor
measurement bin as a positive scalar. For
example, a radar sensor that produces a 4-
D measurement of azimuth, elevation,
range, and range-rate creates a 4-D volume.
The volume is a product of the radar
angular beamwidth, the range bin width,
and the range-rate bin width. The volume is
used in calculating the track score when
initializing and updating a track. This
property is used only when TrackLogic is
set to 'Score'.

MaxNumTracks Specify the maximum number of tracks the
tracker can maintain.

MaxNumSensors Specify the maximum number of sensors
sending detections to the tracker as a
positive integer. This number must be
greater than or equal to the largest
SensorIndex value used in the
objectDetection input to the step
method. This property determines how
many sets of ObjectAttributes each
track can have.

HasDetectableTrackIDsInput Set this property to true if you want to
provide a list of detectable track IDs as
input to the step method. This list contains
all tracks that the sensors expect to detect
and, optionally, the probability of detection
for each track ID.

HasCostMatrixInput Set this property to true if you want to
provide an assignment cost matrix as input
to the step method.

trackerGNN Input

The input to the trackerGNN consists of a list of detections, the update time, cost matrix,
and other data. Detections are specified as a cell array of objectDetection objects (see
“Detections” on page 2-20). The input arguments are listed here.
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trackerGNN Input

tracker A trackerGNN object.
detections Cell array of objectDetection objects

(see “Detections” on page 2-20).
time Time to which all the tracks are to be

updated and predicted. The time at this
execution step must be greater than the
value in the previous call.

costmatrix Cost matrix for assigning detections to
tracks. A real T-by-D matrix, where T is the
number of tracks listed in the allTracks
argument returned from the previous call to
step. D is the number of detections that
are input in the current call. A larger cost
matrix entry means a lower likelihood of
assignment.

detectableTrackIDs IDs of tracks that the sensors expect to
detect, specified as an M-by-1 or M-by-2
matrix. The first column consists of track
IDs, as reported in the TrackID field of the
tracker output. The second column is
optional and allows you to add the
detection probability for each track.

trackerGNN Output

The output of the tracker can consist of up to three struct arrays with track state
information. You can retrieve just the confirmed tracks, the confirmed and tentative
tracks, or these tracks plus a combined list of all tracks.

confirmedTracks = step(...)

[confirmedTracks, tentativeTracks] = step(...)

[confirmedTracks, tentativeTracks, allTracks] = step(...)

The fields contained in the struct are:
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trackerGNN Output struct

TrackID Unique integer that identifies the track.
UpdateTime Time to which the track is updated.
Age Number of updates since track

initialization.
State State vector at update time.
StateCovariance State covariance matrix at update time.
IsConfirmed True if the track is confirmed.
TrackLogic The track logic used in confirming the track

– 'History' or 'Score'.
TrackLogicState The current state of the track logic.

• For 'History' track logic, a 1-by-Q
logical array, where Q is the larger of N
specified in the confirmation threshold
property, ConfirmationThreshold,
and R specified in the deletion threshold
property, DeletionThreshold.

• For 'Score' track logic, a 1-by-2
numerical array in the form:
[currentScore, maxScore].

IsCoasted True if the track has been updated without
a detection. In this case, tracks are
predicted to the current time.

ObjectClassID An integer value representing the target
classification. Zero is reserved for an
"unknown" class.

ObjectAttributes A cell array of cells. Each cell captures the
object attributes reported by the
corresponding sensor.
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Multiple Extended Object Tracking
In traditional tracking systems, the point target model is commonly used. In a point target
model:

• Each object is modeled as a point without any spatial extent.
• Each object gives rise to at most one measurement per sensor scan.

Though the point target model simplifies tracking systems, the assumptions above may
not be valid when modern tracking systems are considered:

• In modern tracking systems, the dimensions of the extended object play a significant
role. For example, in autonomous vehicles, target dimensions must be considered
properly to avoid collision with objects around the autonomous system.

• Modern sensors have a high resolution, and an object can occupy more than one
resolution cell. As a result, the sensor may report multiple detections for that object.
In this case, the point model cannot fully exploit the sensor ability to detect object
extent.

In extended object tracking, a sensor can return multiple detections per scan for an
extended object. The differences between extended object tracking and point object
tracking are more about the sensor properties rather than object properties. For example,
if the resolution of a sensor is high enough, even an object with small dimensions can still
occupy several resolution cells of the sensor.

Sensor Fusion and Tracking Toolbox offers several methods and examples for multiple
extended object tracking. Depending on the assumptions made in the detection and
tracker, these methods can be separated into the following categories:

• One detection per object.

In this category, the conventional trackers (such as trackerGNN, trackerJPDA, and
trackerTOMHT) are used, which assume one detection per object. This category can
further be divided into two methods:

• A point detection per object.

In this method, even though the sensor returns multiple detections per object,
these detections are first converted into one representative point detection with
certain covariance to account for the distribution of these detections. Then the
representative point detection is processed by a conventional tracker, which
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models the object as a point target and tracks its kinematic state. Even though this
method is simple to use, it overlooks the ability of the sensor to detect the object
dimension.

The Point Object Tracker approach shown in the first part of “Extended Object
Tracking and Performance Metrics Evaluation” example adopts this method.

• An extended object detection per object.

In this method, the multiple detections of an extended object are converted into a
single parameterized shape detection. The shape detection includes the kinematic
states of the object, as well as its extent parameters such as length, width and
height. Then the shape detection is processed by a conventional tracker, which
models the object as an extended object by tracking both the object kinematic state
and its dimensions.

In the “Track Vehicles Using Lidar: From Point Cloud to Track List” example, the
Lidar detections of each vehicle are converted into a cuboid detection with length,
width, and height. A JPDA tracker is used to track the position, velocity and
dimensions for all the vehicles with these cuboid detections.

• Multiple detections per object.

In this category, extended object trackers (such as trackerPHD) are used, which
assume multiple detections per object. The detections are fed directly to the tracker,
and the tracker models the extended object using certain default geometric shapes
with variable sizes.

In the “Extended Object Tracking and Performance Metrics Evaluation” example, the
GGIW-PHD Extended Object Tracker approach represents vehicle shapes as ellipses,
and the Prototype Extended Object Tracker approach represents vehicle shapes as
rectangles.

In the “Marine Surveillance Using a PHD Tracker” example, the GGIW-PHD tracker
models the ship shapes as ellipses.
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Linear Kalman Filters
In this section...
“State Equations” on page 3-48
“Measurement Models” on page 3-50
“Linear Kalman Filter Equations” on page 3-50
“Filter Loop” on page 3-51
“Constant Velocity Model” on page 3-52
“Constant Acceleration Model” on page 3-53

When you use a Kalman filter to track objects, you use a sequence of detections or
measurements to construct a model of the object motion. Object motion is defined by the
evolution of the state of the object. The Kalman filter is an optimal, recursive algorithm
for estimating the track of an object. The filter is recursive because it updates the current
state using the previous state, using measurements that may have been made in the
interval. A Kalman filter incorporates these new measurements to keep the state estimate
as accurate as possible. The filter is optimal because it minimizes the mean-square error
of the state. You can use the filter to predict future states or estimate the current state or
past state.

State Equations
For most types of objects tracked in Sensor Fusion and Tracking Toolbox, the state vector
consists of one-, two- or three-dimensional positions and velocities.

Start with Newton equations for an object moving in the x-direction at constant
acceleration and convert these equations to space-state form.

mẍ = f

ẍ = f
m = a

If you define the state as

x1 = x
x2 = ẋ,

you can write Newton’s law in state-space form.
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d
dt

x1
x2

=
0 1
0 0

x1
x2

+
0
1

a

You use a linear dynamic model when you have confidence that the object follows this
type of motion. Sometimes the model includes process noise to reflect uncertainty in the
motion model. In this case, Newton’s equations have an additional term.

d
dt

x1
x2

=
0 1
0 0

x1
x2

+
0
1

a +
0
1

vk

vk is the unknown noise perturbations of the acceleration. Only the statistics of the noise
are known. It is assumed to be zero-mean Gaussian white noise.

You can extend this type of equation to more than one dimension. In two dimensions, the
equation has the form

d
dt

x1
x2
y1
y2

=

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

x1
x2
y1
y2

+

0
ax
0
ay

+

0
vx
0
vy

The 4-by-4 matrix on the right side is the state transition model matrix. For independent
x- and y- motions, this matrix is block diagonal.

When you transition to discrete time, you integrate the equations of motion over the
length of the time interval. In discrete form, for a sample interval of T, the state-
representation becomes

x1, k + 1
x2, k + 1

=
1 T
0 1

x1, k
x2, k

+
0
T

a +
0
1

v

The quantity xk+1 is the state at discrete time k+1, and xk is the state at the earlier
discrete time, k. If you include noise, the equation becomes more complicated, because
the integration of noise is not straightforward.

The state equation can be generalized to

xk + 1 = Fkxk + Gkuk + vk

Fk is the state transition matrix and Gk is the control matrix. The control matrix takes into
account any known forces acting on the object. Both of these matrices are given. The last
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term represents noise-like random perturbations of the dynamic model. The noise is
assumed to be zero-mean Gaussian white noise.

Continuous-time systems with input noise are described by linear stochastic differential
equations. Discrete-time systems with input noise are described by linear stochastic
differential equations. A state-space representation is a mathematical model of a physical
system where the inputs, outputs, and state variables are related by first-order coupled
equations.

Measurement Models
Measurements are what you observe about your system. Measurements depend on the
state vector but are not always the same as the state vector. For instance, in a radar
system, the measurements can be spherical coordinates such as range, azimuth, and
elevation, while the state vector is the Cartesian position and velocity. For the linear
Kalman filter, the measurements are always linear functions of the state vector, ruling out
spherical coordinates. To use spherical coordinates, use the extended Kalman filter.

The measurement model assumes that the actual measurement at any time is related to
the current state by

zk = Hkxk + wk

wk represents measurement noise at the current time step. The measurement noise is also
zero-mean white Gaussian noise with covariance matrix Q described by Qk = E[nknk

T].

Linear Kalman Filter Equations
Without noise, the dynamic equations are

xk + 1 = Fkxk + Gkuk .

Likewise, the measurement model has no measurement noise contribution. At each
instance, the process and measurement noises are not known. Only the noise statistics
are known. The

zk = Hkxk

You can put these equations into a recursive loop to estimate how the state evolves and
also how the uncertainties in the state components evolve.
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Filter Loop
Start with a best estimate of the state, x0/0, and the state covariance, P0/0. The filter
performs these steps in a continual loop.

1 Propagate the state to the next step using the motion equations.

xk + 1 k = Fkxk k + Gkuk .

Propagate the covariance matrix as well.

Pk + 1 k = FkPk kFk
T + Qk .

The subscript notation k+1|k indicates that the quantity is the optimum estimate at
the k+1 step propagated from step k. This estimate is often called the a priori
estimate.

Then predict the measurement at the updated time.

zk + 1 k = Hk + 1xk + 1 k

2 Use the difference between the actual measurement and predicted measurement to
correct the state at the updated time. The correction requires computing the Kalman
gain. To do this, first compute the measurement prediction covariance (innovation)

Sk + 1 = Hk + 1Pk + 1 kHk + 1
T + Rk + 1

Then the Kalman gain is

Kk + 1 = Pk + 1 kHk + 1
T Sk + 1

−1

and is derived from using an optimality condition.
3 Correct the predicted estimate with the measurement. Assume that the estimate is a

linear combination of the predicted state and the measurement. The estimate after
correction uses the subscript notation, k+1|k+1. is computed from

xk + 1 k + 1 = xk + 1 k + Kk + 1(zk + 1− zk + 1 k)

where Kk+1 is the Kalman gain. The corrected state is often called the a posteriori
estimate of the state because it is derived after the measurement is included.

Correct the state covariance matrix
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Pk + 1 k + 1 = Pk + 1 k− Kk + 1Sk + 1K′k + 1

Finally, you can compute a measurement based upon the corrected state. This is not a
correction to the measurement but is a best estimate of what the measurement would
be based upon the best estimate of the state. Comparing this to the actual
measurement gives you an indication of the performance of the filter.

This figure summarizes the Kalman loop operations.

Constant Velocity Model
The linear Kalman filter contains a built-in linear constant-velocity motion model.
Alternatively, you can specify the transition matrix for linear motion. The state update at
the next time step is a linear function of the state at the present time. In this filter, the
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measurements are also linear functions of the state described by a measurement matrix.
For an object moving in 3-D space, the state is described by position and velocity in the x-,
y-, and z-coordinates. The state transition model for the constant-velocity motion is

xk + 1
vx, k + 1
yk + 1

vy, k + 1
zk + 1

vz, k + 1

=

1 T 0 0 0 0
0 1 0 0 0 0
0 0 1 T 0 0
0 0 0 1 0 0
0 0 0 0 1 T
0 0 0 0 0 1

xk
vx, k
yk

vy, k
zk

vz, k

The measurement model is a linear function of the state vector. The simplest case is one
where the measurements are the position components of the state.

mx, k
my, k
mz, k

=
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

xk
vx, k
yk

vy, k
zk

vz, k

Constant Acceleration Model
The linear Kalman filter contains a built-in linear constant-acceleration motion model.
Alternatively, you can specify the transition matrix for constant-acceleration linear
motion. The transition model for linear acceleration is
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xk + 1
vx, k + 1
ax, k + 1
yk + 1

vy, k + 1
ay, k + 1
zk + 1

vz, k + 1
az, k + 1

=

1 T 1
2T2 0 0 0 0 0 0

0 1 T 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

0 0 0 1 T 1
2T2 0 0 0

0 0 0 0 1 T 0 0 0
0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 T 1
2T2

0 0 0 0 0 0 0 1 T
0 0 0 0 0 0 0 0 1

xk
vx, k
ax, k
yk

vy, k
ay, k
zk

vz, k
az, k

The simplest case is one where the measurements are the position components of the
state.

mx, k
my, k
mz, k

=
1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

xk
vx, k
ax, k
yk

vy, k
ay, k
zk

vz, k
ay, k

See Also
Objects
trackingKF
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Extended Kalman Filters
In this section...
“State Update Model” on page 3-55
“Measurement Model” on page 3-56
“Extended Kalman Filter Loop” on page 3-56
“Predefined Extended Kalman Filter Functions” on page 3-57

Use an extended Kalman filter when object motion follows a nonlinear state equation or
when the measurements are nonlinear functions of the state. A simple example is when
the state or measurements of the object are calculated in spherical coordinates, such as
azimuth, elevation, and range.

State Update Model
The extended Kalman filter formulation linearizes the state equations. The updated state
and covariance matrix remain linear functions of the previous state and covariance
matrix. However, the state transition matrix in the linear Kalman filter is replaced by the
Jacobian of the state equations. The Jacobian matrix is not constant but can depend on
the state itself and time. To use the extended Kalman filter, you must specify both a state
transition function and the Jacobian of the state transition function.

Assume there is a closed-form expression for the predicted state as a function of the
previous state, controls, noise, and time.

xk + 1 = f (xk, uk, wk, t)

The Jacobian of the predicted state with respect to the previous state is

F(x) = ∂ f
∂x .

The Jacobian of the predicted state with respect to the noise is

F(w) = ∂ f
∂wi

.

These functions take simpler forms when the noise enters linearly into the state update
equation:
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xk + 1 = f (xk, uk, t) + wk

In this case, F(w) = 1M.

Measurement Model
In the extended Kalman filter, the measurement can be a nonlinear function of the state
and the measurement noise.

zk = h(xk, vk, t)

The Jacobian of the measurement with respect to the state is

H(x) = ∂h
∂x .

The Jacobian of the measurement with respect to the measurement noise is

H(v) = ∂h
∂v .

These functions take simpler forms when the noise enters linearly into the measurement
equation:

zk = h(xk, t) + vk

In this case, H(v) = 1N.

Extended Kalman Filter Loop
This extended kalman filter loop is almost identical to the linear Kalman filter loop except
that:

• The exact nonlinear state update and measurement functions are used whenever
possible and the state transition matrix is replaced by the state Jacobian

• The measurement matrices are replaced by the appropriate Jacobians.
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Predefined Extended Kalman Filter Functions
Sensor Fusion and Tracking Toolbox provides predefined state update and measurement
functions to use in the extended Kalman filter.

Motion Model Function Name Function Purpose
Constant velocity constvel Constant-velocity state

update model
constveljac Constant-velocity state

update Jacobian
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Motion Model Function Name Function Purpose
cvmeas Constant-velocity

measurement model
cvmeasjac Constant-velocity

measurement Jacobian
Constant acceleration constacc Constant-acceleration state

update model
constaccjac Constant-acceleration state

update Jacobian
cameas Constant-acceleration

measurement model
cameasjac Constant-acceleration

measurement Jacobian
Constant turn rate constturn Constant turn-rate state

update model
constturnjac Constant turn-rate state

update Jacobian
ctmeas Constant turn-rate

measurement model
ctmeasjac Constant-turnrate

measurement Jacobian

See Also
Objects
trackingEKF
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Data Structures
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Target Pose
Target pose consists of the position, velocity, orientation, and signature of a target. All
quantities are specified in the frame of a sensor platform. The target pose structure has
these fields:

Field Description
PlatformID Unique identifier for the platform, specified

as a scalar positive integer. This is a
required field with no default value.

ClassID User-defined integer used to classify the
type of target, specified as a nonnegative
integer. Zero is reserved for unclassified
platform types and is the default value.

Position Position of target in platform coordinates,
specified as a real-valued, 1-by-3 vector.
This is a required field with no default
value. Units are in meters.

Velocity Velocity of target in platform coordinates,
specified as a real-valued, 1-by-3 vector.
Units are in meters per second. The default
is [0 0 0].

Acceleration Acceleration of target in platform
coordinates specified as a 1-by-3 row
vector. Units are in meters per second-
squared. The default is [0 0 0].

Orientation Orientation of the target with respect to
platform coordinates, specified as a scalar
quaternion or a 3-by-3 rotation matrix.
Orientation defines the frame rotation from
the platform coordinate system to the
current target body coordinate system.
Units are dimensionless. The default is
quaternion(1,0,0,0).
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Field Description
AngularVelocity Angular velocity of target in platform

coordinates, specified as a real-valued, 1-
by-3 vector. The magnitude of the vector
defines the angular speed. The direction
defines the axis of clockwise rotation. Units
are in degrees per second. The default is [0
0 0].

 Target Pose
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Platform Pose
Platform pose consists of the position, velocity, orientation, and angular velocity of a
platform with respect to scenario coordinates. The returned structure has these fields:

Field Description
PlatformID Unique identifier for the platform, specified

as a scalar positive integer. This is a
required field with no default value.

ClassID User-defined integer used to classify the
type of target, specified as a nonnegative
integer. Zero is reserved for unclassified
platform types and is the default value.

Position Position of target in scenario coordinates,
specified as a real-valued 1-by-3 vector. This
is a required field with no default value.
Units are in meters.

Velocity Velocity of platform in scenario coordinates,
specified as a real-valued 1-by-3 vector.
Units are in meters per second. The default
value is [0 0 0].

Acceleration Acceleration of the platform in scenario
coordinates, specified as a 1-by-3 row
vector in meters per second-squared. The
default value is [0 0 0].

Orientation Orientation of the platform with respect to
the local scenario NED coordinate frame,
specified as a scalar quaternion or a 3-by-3
rotation matrix. The format is specified by
the fmt input argument. Orientation
defines the frame rotation from the local
NED coordinate system to the current
platform body coordinate system. Units are
dimensionless. The default value is
quaternion(1,0,0,0).
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Field Description
AngularVelocity Angular velocity of the platform in scenario

coordinates, specified as a real-valued 1-
by-3 vector. The magnitude of the vector
defines the angular speed. The direction
defines the axis of clockwise rotation. Units
are in degrees per second. The default is
value [0 0 0].

 Platform Pose
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Platform Profiles
A profile contains the radar, IR, or sonar properties of a platform. The structure contains
these fields:

Field Description
PlatformID Scenario-defined platform identifier,

defined as a positive integer
ClassID User-defined platform classification

identifier, defined as a nonnegative integer
Signatures Platform signatures defined as a cell array

of radar cross-section (rcsSignature), IR
emission pattern (irSignature), and
sonar target strength (tsSignature)
objects.
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Object Detections
Sensor detections are returned as a cell array of objectDetection objects. A detection
contains these properties.

Property Definition
Time Measurement time
Measurement Object measurements
MeasurementNoise Measurement noise covariance matrix
SensorIndex Unique ID of the sensor
ObjectClassID Object classification
MeasurementParameters Parameters used by initialization functions

of nonlinear Kalman tracking filters
ObjectAttributes Additional information passed to tracker

Measurements and Measurement Noise
The sensor measures the coordinates of the target. The Measurement and
MeasurementNoise values are reported in the coordinate system specified by the
DetectionCoordinates property of the sensor.

When the DetectionCoordinates property is 'Scenario', 'Body', or 'Sensor
rectangular', the Measurement and MeasurementNoise values are reported in
rectangular coordinates. Velocities are only reported when the range rate property,
HasRangeRate, is true.

When the DetectionCoordinates property is 'Sensor spherical', the
Measurement and MeasurementNoise values are reported in a spherical coordinate
system derived from the sensor rectangular coordinate system. Elevation and range rate
are only reported when HasElevation and HasRangeRate are true.

Measurements are ordered as [azimuth, elevation, range, range rate]. Reporting of
elevation and range rate depends on the corresponding HasElevation and
HasRangeRate property values. Angles are in degrees, range is in meters, and range rate
is in meters per second.

 Object Detections
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Measurement Coordinates
DetectionCoordinates Measurement and Measurement Noise

Coordinates
'Scenario' Coordinate Dependence on

HasRangeRate

HasRangeRate Coordinates
true [x; y; z; vx; vy; vz]
false [x; y; z]

'Body'
'Sensor rectangular'

'Sensor spherical' Coordinate Dependence on
HasRangeRate and HasElevation

HasRangeRa
te

HasElevati
on

Coordinate
s

true true [az; el; rng;
rr]

true false [az; rng; rr]
false true [az; el; rng]
false false [az; rng]

Measurement Parameters
The MeasurementParameters property consists of an array of structures that describe a
sequence of coordinate transformations from a child frame to a parent frame or the
inverse transformations (see “Frame Rotation”). In most cases, the longest required
sequence of transformations is Sensor → Platform → Scenario.

If the detections are reported in sensor spherical coordinates and HasINS is set to
false, then the sequence consists only of one transformation from sensor to platform. In
the transformation, the OriginPosition is same as the MountingLocation property
of the sensor. The Orientation consists of two consecutive rotations. The first rotation,
corresponding to the MountingAngles property of the sensor, accounts for the rotation
from the platform frame (P) to the sensor mounting frame (M). The second rotation,
corresponding to the azimuth and elevation angles of the sensor, accounts for the rotation
from the sensor mounting frame (M) to the sensor scanning frame (S). In the S frame, the
x direction is the boresight direction, and the y direction lies within the x-y plane of the
sensor mounting frame (M).
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If HasINS is true, the sequence of transformations consists of two transformations – first
form the scenario frame to the platform frame then from platform frame to the sensor
scanning frame. In the first transformation, the Orientation is the rotation from the
scenario frame to the platform frame, and the OriginPosition is the position of the
platform frame origin relative to the scenario frame.

Trivially, if the detections are reported in platform rectangular coordinates and HasINS is
set to false, the transformation consists only of the identity.

The fields of MeasurementParameters are shown here. Not all fields have to be present
in the structure. The set of fields and their default values can depend on the type of
sensor.

Field Description

 Object Detections
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Frame Enumerated type indicating the frame used
to report measurements. When detections
are reported using a rectangular coordinate
system, Frame is set to 'rectangular'.
When detections are reported in spherical
coordinates, Frame is set 'spherical' for
the first struct.

OriginPosition Position offset of the origin of the child
frame relative to the parent frame,
represented as a 3-by-1 vector.

OriginVelocity Velocity offset of the origin of the child
frame relative to the parent frame,
represented as a 3-by-1 vector.

Orientation 3-by-3 real-valued orthonormal frame
rotation matrix. The direction of the
rotation depends on the IsParentTochild
field.

IsParentToChild A logical scalar indicating if Orientation
performs a frame rotation from the parent
coordinate frame to the child coordinate
frame. If false, Orientation performs a
frame rotation from the child coordinate
frame to the parent coordinate frame.

HasElevation A logical scalar indicating if elevation is
included in the measurement. For
measurements reported in a rectangular
frame, and if HasElevation is false, the
measurements are reported assuming 0
degrees of elevation.

HasAzimuth A logical scalar indicating if azimuth is
included in the measurement.

HasRange A logical scalar indicating if range is
included in the measurement.
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HasVelocity A logical scalar indicating if the reported
detections include velocity measurements.
For measurements reported in the
rectangular frame, if HasVelocity is
false, the measurements are reported as
[x y z]. If HasVelocity is true,
measurements are reported as [x y z vx
vy vz].

Object Attributes
Object attributes contain additional information about a detection:

Attribute Description
TargetIndex Identifier of the platform, PlatformID,

that generated the detection. For false
alarms, this value is negative.

SNR Detection signal-to-noise ratio in dB.

 Object Detections
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Signal Structure
Emitted signals have this structure:

Field Description
PlatformID 1
EmitterIndex 1
OriginPosition real-valued 3-by-1 vector
OriginVelocity real-valued 3-by-1 vector
Orientation 1-by-1 quaternion
FieldOfView [1 5]
EIRP 100
RCS 0
CenterFrequency 300e6
Bandwidth 3e6
WaveformType 0
ProcessingGain 0
PropagationRange 0
PropagationRangeRate 0
IsDirectPath 1
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INS
INS is valid when the HasINS property is true.

Platform pose information from an inertial navigation system (INS) is a structure which
has these fields:

Field Definition
Position Position of the GPS receiver in the local

NED coordinate system, specified as a real-
valued 1-by-3 vector. Units are in meters.

Velocity Velocity of the GPS receiver in the local
NED coordinate system, specified as a real-
valued 1-by-3 vector. Units are in meters
per second.

Orientation Orientation of the INS with respect to the
local NED coordinate system, specified as a
scalar quaternion or a 3-by-3 real-valued
orthonormal frame rotation matrix. Defines
the frame rotation from the local NED
coordinate system to the current INS body
coordinate system. This is also referred to
as a "parent to child" rotation.

 INS
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Sensor Configuration
Field Description
SensorIndex Unique sensor index
IsValidTime Valid detection time, returned as 0 or 1.

IsValidTime is 0 when detection updates
are requested at times that are between
update intervals specified by
UpdateInterval.

IsScanDone IsScanDone is true when the sensor has
completed a scan.

FieldOfView Field of view of sensor determines which
objects fall within the sensor beam during
object execution. The field of view is
defined as a 2-by-1 vector of positive real
values, [azfov;elfov].

MeasurementParameters MeasurementParameters is an array of
structures containing the coordinate frame
transforms needed to transform positions
and velocities in the top-level frame to the
current sensor frame.
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Emitter Configuration
Field Description
EmitterIndex Unique emitter index
IsValidTime Valid emission time, returned as 0 or 1.

IsValidTime is 0 when emitter updates
are requested at times that are between
update intervals specified by
UpdateInterval.

IsScanDone IsScanDone is true when the emitter has
completed a scan.

FieldOfView Field of view of emitter.
MeasurementParameters MeasurementParameters is an array of

structures containing the coordinate frame
transforms needed to transform positions
and velocities in the top-level frame to the
current emitter frame.

 Emitter Configuration
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